# Practice C 1 2 (

```Name ———————————————————————
LESSON
4.1
Date ————————————
Practice C
For use with the lesson “Graph Exponential Growth Functions”
Graph the function. State the domain and range.
2. f(x) 5 4(2x) 1 1
1. f(x) 5 2x 2 1 2 3
y
y
2
y
2
2
2
x
2
x
5 x11
5. f (x) 5 22 }
12
2
1 2
4. f(x) 5 7x 2 2 2 5
LESSON 4.1
3. f (x) 5 22(3x 1 3) 1 3
y
2
3 x22
3
6. f (x) 5 4 }
2 }2
2
1 2
y
2
y
2
2
x
x
2
2
x
2
x
whose graph has a y-intercept of 0 and an asymptote of y 5 3.
8. Visual Thinking Graph the following functions on the same coordinate plane:
3 x
y 5 2x, y 5 3x, and y 5 1 }2 2 . Explain how the value of a in the equation y 5 a x
affects the graph if a > 1.
In Exercises 9–11, use the following information.
Initial Deposit You want to have \$10,000 in your account after five years. Find the
amount your initial deposit should be for each of the following described situations.
9. The account pays 3.5% annual interest compounded monthly.
10. The account pays 2.75% annual interest compounded quarterly.
11. The account pays 4.25% annual interest compounded yearly.
In Exercises 12–14, use the following information.
Population From 1990 to 2000, the population of Florida increased by 23.5%.
The population in 2000 was 15,982,378.
12. What was the average annual percent increase from 1990 to 2000?
13. Write a model giving the population P of Florida t years after 1990.
14. Estimate the population in 1999.
4-8
Algebra 2
Chapter Resource Book
Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.
7. Generate Equation Write an exponential function of the form y 5 ab x 2 h 1 k
Answers for Chapter 4
Lesson 4.1 Graph Exponential
Growth Functions
Exponential and Logarithmic Functions
7.
; domain: all real numbers;
range: y > 23
y
2
Teaching Guide
x
2
1
2
3
4
5
x21
1. 8; 16; 32 2. 2 , 2 , 2 , 2 , 2 , 2 , 2
where
18
x is the number of the square 3. 9.22 310 ; no
8.
Practice Level A
1. B 2. A 3. D 4. F 5. C 6. E
7.
8.
y
; domain: all real numbers;
range: y < 2
y
2
y
ANSWERS
0
x
2
4
2
2
x
2
x
9.
; domain: all real numbers;
range: y > 22
y
2
9.
10.
y
y
x
2
4
2
2
x
2
x
10. \$3587.50 11. \$3588.32 12. \$3588.51
13. 29,816,591 14. 1.0128; 1.28%
11.
12.
y
15. 32,592,962
y
Practice Level C
4
2
2
x
1.
2
; domain: all real numbers;
range: y > 23
y
x
Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.
2
4
x
13. \$5150.00 14. \$5151.70 15. \$5152.08
Practice Level B
2.
1. C 2. A 3. B
4.
; domain: all real numbers;
range: y > 0
y
1
1
2
2
4
2
; domain: all real numbers;
range: y < 0
y
2
2
x
x
4.
6.
; domain: all real numbers;
range: y < 3
y
2
; domain: all real numbers;
range: y > 1
y
2
x
x
3.
5.
; domain: all real numbers;
range: y > 1
y
; domain: all real numbers;
range: y > 25
y
2
2
x
x
Algebra 2
Chapter Resource Book
A47
; domain: all real numbers;
range: y < 2
y
2
2
; domain: all real numbers;
y
3
range: y > 2}2
2
2
2. p 5 2200(1.03)t
M
270
260
250
240
230
220
210
200
190
180
0
x
8. All three have a y-intercept of 1. The larger a
is the steeper the graph. 9. \$8396.71
10. \$8719.45 11. \$8121.19 12. 2.13%
13. y 5 12,941,197(1.0213)t 14. 15,644,239
Study Guide
1.
1
; domain: all real numbers,
range: y > 0
1
1
x
; domain: all real numbers,
range: y > 21
y
1
1
x
4. \$2171.38
A48
Challenge Practice
1
1. y 5 64 + 8x 2. y 5 3 + 4x 3. y 5 } + 5x
2
4. y 5 3 + 3x
5. a.
(0, 1)
y
g(x) 5 4 x
f(x) 5 3 x
0.5
x
6. a. \$5466.09 b. \$5466.35 c. \$5466.36
d. \$5466.38
x
y
3.
3231 people: 1998
b. 4x < 3x for x < 0 c. 4x > 3x for x > 0
1
2.
0 2 4 6 8 10 12 14 t
Years since 1990
0 1 2 3 4 5 6 t
Years since 1999
1.5
; domain: all real numbers,
range: y > 0
y
2800
2600
2400
2200
2000
0
\$218 billion; 2003
7. Sample answer: y 5 23x 1 1 1 3
p
3400
3200
3000
Algebra 2
Chapter Resource Book
Increasing the number of compoundings per year
does not result in unlimited growth of the amount
in the account. There is a limiting value of about
\$5466.38 for the amount in the account.
7. a. about 4.07% b. 4.06% c. about 4.33%
d. 4.32% e. The savings plan in part (c) has the
greatest effective yield. f. The savings plan in
part (c) will have the greatest balance after 5 years
because it has the greatest effective yield.
g. For an account with an initial deposit of \$1000,
the effective yield for the account will be greater
for larger interest rates and more frequent
compoundings.
Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.
6.
x
1. M 5 190.4(1.07)t
Number of people
ANSWERS
5.
Problem Solving Workshop:
Worked Out Example
Federal budget outlays for
Medicare (billions of dollars)
Lesson 4.1 Graph Exponential
Growth Functions, continued
```