RESOMOST SAMPLE TEST PAPER TARGET : AIPMT 2015 v uq

RESOMOST
SAMPLE TEST PAPER
TARGET : AIPMT 2015
CLASS : XI TO XII MOVING STUDENTS
Duration : 3 Hours
Max. Marks : 800
INSTRUCTIONS
v uq
ns'k
A. General :
A. lkekU; :
1.
This Question Paper contains 200 (50 Chemistry, 50
Physics & 100 Biology) questions.
1.
The question paper CODE is printed on the right hand
top corner on this sheet of this booklet.
2.
Rough work is to be done on the space provided for
this purpose in the Test Booklet only. This space is
3.
2.
3.
50 Physics & 100 Biology)
Blank paper, clipboard, log tables, slide rules,
calculators, cellular phones, pagers and electronic
iz'u gSaA
iz'u i=k d k d ksM CODE izLrqr i`"B d sÅ ij nk,¡d ksusesa
Nik gSA
jQ d k;Zijh{kkiq
fLrd kes
ad soy fu/kkZ
fjr t xg ij ghd hft ,A
;g t xg iz
R;s
d i`
"B ij uhpsd h vks
j gS
A
given at the bottom of each page.
4.
;g iqfLrd kvkid kiz'u i=kgSA ft lesa200 (50 Chemistry,
4.
ijh{kk Hkou d svUnj d ksjsd kxt ] fDyi cksMZ] ykWx Vscy]
LykbM : y]d Sy d qy sVj]lsy qy j Q ksu]ist j vkSj bysDVªkfud
gadgets in any form are not allowed.
mid j.k fd lh Hkh : i esafuf"k) gSaA
mRrj i=k],d ;a
=kJs
.khd j.k;kXs; i=kObjective Response
The answer sheet, a machine-gradable Objective
Response Sheet (ORS), is provided separately.
5.
6.
Do not Tamper / mutilate the ORS or this booklet.
6.
iq
fLrd k vFkok ORS es
au rksgs
j Qs
j d js
au gh mlsfod r` d js
Aa
7.
Do not break the seals of the question-paper booklet
before instructed to do so by the invigilators.
7.
t c rd ifjos"kd funsZ'k ughansarc rd iz'u i=k d h lhy
5.
Sheet (ORS) gSt ksfd
d ksugha[kksay sA
B. Question paper format and Marking scheme :
B. iz
'ui=k xzUFkkd kj
8.
8.
The question paper consists of 3 Parts (Part-A
(Chemistry), PART-B (Physics) & PART-C (Biology)).
9.
For each question, you will be awarded 4 marks if
you darken the bubble corresponding to the correct
answer and zero marks if no bubble is darkened. In
case of bubbling of incorrect answer, minus one (–1)
mark will be awarded.
vyx lsfn;st k;s
xs
a
A
a
v kSj v ad u v k;kst u :
iz'ui=k3 Hkkxksad kgS(Hkkx-A (Chemistry), Hkkx-B (Physics)
rFkk Hkkx-C (Biology) gSA
9.
[k.M –I d s izR;sd iz'u d s fy,] ;fn vkius flQ Z mfpr
mRrjokyscqYysd ksgh d kyk fd ;k gSrksvkid ks4 v ad fn;s
t k,axsA ;fn fd lh Hkh cqYysd ksd kyk ughafd ;k gSrks'kwU;
v ad fn;k t k,xkA xyr mRrj d scqYysd ksd kyk d jusij
_ .kkRed ,d (–1) v ad fn;k t k,xkA
PART-A
Atomic masses : [H = 1, D = 2, Li = 7, C = 12, N = 14, O = 16, F = 19, Na = 23, Mg = 24, Al = 27,
Si = 28, P = 31, S = 32, Cl = 35.5, K = 39, Ca = 40, Cr = 52, Mn = 55, Fe = 56, Cu = 63.5, Zn = 65,
As = 75, Br = 80, Ag = 108, I = 127, Ba = 137, Hg = 200, Pb = 207]
Straight Objective Type
This section contains 50 multiple choice
questions. Each question has 4 choices (1), (2),
(3) and (4) for its answer, out of which ONLY
ONE is correct.
1. Pick out the incorrect statement.
l h/ksoLrqfu"B izd kj
bl [k.M es
a50 cgq& fod Yihiz
'u gS
A iz
a
R;sd iz
'u d s
4 fod Yi (1), (2), (3) rFkk (4) gS
a]ft uesalsfl Q Z,d
l gh gSA
1. fuEu es
alsvlR; d Fku crkb;sA
-2
3
2
(1) BO ion is triangular planar in which boron
is sp hybridised.
-2
3
(2) Boric acid contains planar triangular BO
units which are bonded together through
hydrogen bonds into two dimensional sheets.
(3) Borozine is isoelectronic with benzene. In
(1) BO3-2 vk;u f=kd ks
.kh; lery h; gS] ft lesacksjkWu
sp2 la
d fjr gSaA
(2) ckf
sjd vEy es
aleryh; f=kd k.skh; BO3-2 bZ
d kbZ
;k¡
gkrsh gS
at ksfd f}foeh; ijrkases
agkbMª
kts u ca
/kkas}kjk
ijLij ca
/kh jgrh gS
A
both compounds, the  electrons are
delocalised.
(3) cks
jkt hu]csat hu lsleby sDVªkWuh; gSA nksuksa;kSfxd ksa
(4) The structure of boron nitride resembles that
of diamond.
(4) cks
jkWu ukbVªkbM d h lajpuk ghjslslekurk n'kkZrh
2. In cyclic trimer of SO3 (i.e. S3O9) the number of
oxygen atoms bonded to each sulphur atom is :
2. SO3 d spfØ ; f=ky d es
a(vFkkZr S3O9 esa) izR;sd lYQ j
(1) 4
(3) 6
(2) 5
(4) 3
1
is shown by the following
T
graph in which straight line is at 45°, hence H°
3. Variation of n K with
is :
esa] ca/k foLFkkuhd `r gSA
gSaA
ijek.kqlscaf/kr vkWDlht u ijek.kqv ksad h la[;k gS%
(1) 4
(3) 6
3. n K d k
(2) 5
(4) 3
1
T
d slkFk ifjorZu fuEu vkjs[k }kjk iznf'kZr
fd ;kx;kgS]ft lesa45° d sd ks.kij gesa,d lh/khjs[kk
izkIr gksrh gSrksH° d k eku gksxk %
(1) + 4.606 cal/mole
(2) – 4.606 cal/mole
(1) + 4.606 cal/mole
(2) – 4.606 cal/mole
(3) 2 cal/mole
(4) – 2 cal/mole
(3) 2 cal/mole
(4) – 2 cal/mole
RESONANCE
XI-XII ResoMost_STP 1
4. The structural unit present in pyro sillicates is :
4. ik;jks
flfy d sV esamifLFkr lajpukRed bd kbZgS%
(1) Si3O96–
(2) SiO44–
(1) Si3O96–
(2) SiO44–
(3) Si2O76–
(4) (Si2O52–)n
(3) Si2O76–
(4) (Si2O52–)n
5. Which of the following is octahedral?
(1) XeO6
4–
(3) XeO2F2
5. fuEu es
al sd kSul k v"VQ y d h; gS\
(2) XeOF4
(1) XeO64–
(2) XeOF4
(4) XeF5
(3) XeO2F2
(4) XeF5–
–
6. Which of the following would be expected to have
zero dipole moment on the basis of symmetry?
(1) XeF2
(2) OF2
(3) SF2
(4) NF3
7. Valency factor of the following compounds will
be same in neutrilisation -
6. lefefr d svk/kkj ij fuEu es
alsfd ld sfy ,] f}/kzqo
vk?kw.kZd k eku 'kwU; gksxk \
(1) XeF2
(2) OF2
(3) SF2
(4) NF3
7. mnklhuhd j.k es
afuEu ;kSfxd d sfy , la;kst hd kjd
(V.f.) leku gks
xk
(1) SO2  H2SO3
(2) NH3 + H+  NH4+
(1) SO2  H2SO3
(2) NH3 + H+  NH4+
(3) N2O5  2HNO3
(3) N2O5  2HNO3
(4) A and C have same valency factor
(4) A vkS
j C leku la;kst hd kjd j[krsgSA
8. If K 1 and K 2 are equilibrium constant for
reactions (I) and (II) respectively for,
N2 + O2
2NO
1
1
N2 + O2
2
2
NO
...........(i)
...........(ii)
8. ;fn fuEu vfHkfØ ;k (I) rFkk(II)
N2 + O2
2NO
1
1
N2 + O2
2
2
...........(i)
NO
...........(ii)
d sfy ,] lkE;&fu;rkad Ø e'k% K1 rFkkK2 gks] rc
(1) K2 = K1
(2) K 2  k 1
(3) K1 = 2K2
(4) K2 = 1/2 K2
9. Which is the best description of the behaviour
of bromine in the reaction given below ?
(1) K2 = K1
(2) K 2  k 1
(3) K1 = 2K2
(4) K2 = 1/2 K2
9. uhpsnh xbZvfHkfØ ;k es
aczksehu d sfy , lclslgh
fVIi.kh fuEu gS\
H2O + Br2  HOBr + HBr
(1) Proton acceptor only
(2) Both oxidised and reduced
(3) Oxidised only
(4) Reduced only
H2O + Br2  HOBr + HBr
ksVksuxzkgh d soy
(1) iz
(2) vkW
Dlhd `r o vipf;r nksuksa
(3) d s
oy vkWDlhd `r
(4) d s
oy vipf;r
RESONANCE
XI-XII ResoMost_STP 2
10. In the balanced chemical reaction,
10. la
rqfy r jklk;fud vfHkfØ ;k]
O3– + a– + bH+  cH2O + d2
O3– + a– + bH+  cH2O + d2
a, b, c and d respectively correspond to
a, b, c o d Ø e'k%fuEu gS%
(1) 5, 6, 3, 3
(3) 3, 5, 3, 6
(1) 5, 6, 3, 3
(3) 3, 5, 3, 6
(2) 5, 3, 6, 3
(4) 5, 6, 5,5
11. Oxidation number of iodine varies from(1) –1 to +1
(3) +3 to +5
(2) –1 to +7
(4) –1 to +5
3
12. Oxidation state of Cr in Cr  CN 6 and CrO2Cl2
(2) 5, 3, 6, 3
(4) 5, 6, 5,5
11. vk;ks
M hu d h vkWDl hd j.k l a[;k d gk¡l sd gk¡rd
gksrh gS&
(1) –1 l s+1
(2) –1 l s+7
(3) +3 l s+5
(4) –1 l s+5
3
12. Cr  CN 6 rFkkCrO2Cl2 es
aCr d hvkDWlhd j.kvoLFkk
gksxh&
are
(1) 3 & 3
(2) 6 & 6
(1) 3 & 3
(2) 6 & 6
(3) 6 & 3
(4) 3 & 6
(3) 6 & 3
(4) 3 & 6
13. Oxidation state of sulphur in Caro's acid, H2SO5
is
(1) +8
(3) +3
(2) +6
(4) -2
14. The equilibrium constant, Kp for SO3(g) + NO(g)
SO2(g) + NO2(g) is 0.12 at 460ºC. Suppose
you began with 6 moles SO3, 10 moles NO, 3
moles SO2 and 1 mole NO2 in a closed fixed
volume vessel. After some time it would be true
that :
(1) there will be less than 6 moles SO3.
(2) there will be more than 6 moles SO3.
(3) the concentration of NO will increase.
(4) nothing will have changed.
15. For reaction N 2O 4
2NO 2 at given
temperature if K p =
8
for 30% degree of
5
dissociation at equilibrium then what will be new
Kp for 50% dissociation of N2O4 at equilibrium at
same temperature :
(1)
(3)
5
8
2
5
RESONANCE
(2)
(4)
8
5
12
5
13. Caro's vEy H2SO5 es
alYQ j d h vkWDlhd j.k voLFkk
gSA
(1) +8
(3) +3
(2) +6
(4) -2
14. 460°C rki ij vfHkfØ ;kSO3(g) + NO(g)
SO2(g)
+ NO2(g) d sfy , lkE; fu;rka
d Kp = 0.12 gSekuk fd
izkjEHk esafu;r vk;ru d s,d can ik=k esa] SO3 d s6
eksy ]NO d s10 eksy ] SO2 d s3 eksy ]rFkkNO2 d s1
eksy y sd j vfHkfØ ;kizkjEHkd hx;hA d qN le; i'pkr~
bld sfy , fuEu esalsD;k lgh gksxk :
(1) ;gk¡ij SO3 d seks
y ] 6 eksy lsd e gksaxsaA
(2) ;gk¡ij SO3 d seks
y ] 6 eksy lsvf/kd gksaxsaA
(3) NO d h lka
nzrk esao`f) gksxhA
(4) d ks
bZifjorZu ughagksxkA
15. fn;sx;srki ij vfHkfØ ;k N2O4
2NO2 d sfy ,
;fn lkE; ij 30% fo;kst u d h ek=kkd slkFkKp =
8
5
gSrc]leku rki ij]lkE; ij N2O4 d s50% fo;kst u
d h ek=kk d slkFk Kp D;k gksxk \
(1)
5
8
(2)
8
5
(3)
2
5
(4)
12
5
XI-XII ResoMost_STP 3
16. Densities of diamond and graphite are 3.5 g/mL
and 2.3 g/mL.
C (diamond)
C (graphite)
Favourable conditions for formation of diamond
are :
(1) high pressure and low temperature
(2) low pressure and high temperature
(3) high pressure and high temperature
(4) low pressure and low temperature
17. A sample of pure NO2 gas heated to 1000 K
2NO(g) + O2(g).
The equilibrium constant KP is 100 atm. Analysis
shows that the partial pressure of O2 is 0.25 atm.
at equilibrium. The partial pressure of NO2 at
equilibrium is:
(1) 0.03
(2) 0.25
(3) 0.025
(4) 0.04
18. For the reaction, A + 2B
2C, the rate
constants for the forward and the backward
reactions are 1 × 10–4 and 2.5 × 10–2 respectively.
The value of equilibrium constant, K for the
reaction would be
(1) 1 × 10–4
(3) 4 × 10–3
(2) 2.5 × 10–2
(4) 2.5 × 102
19. For the reaction CaCO3(s)
mL gS
A
C (ghjk)
rH = – 1.9 kJ/mole
decomposes : 2NO2(g)
16. ghjsrFkkxz
Q kbV d k?kuRo Ø e'k%3.5 g/mL rFkk2.3 g/
s
CaO(s) +
C (xz
sQ kbV)
rH = – 1.9 kJ/mole
ghjsd sfuekZ.k d sfy ;svko';d ifjLFkfr gksxh %
(1) mPp nkc rFkk fuEu rki
(2) fuEu nkc rFkk mPp rki
(3) mPp nkc rFkk mPp rki
(4) fuEu nkc rFkk fuEu rki
17. 'kq
) NO2 xS
l d suew
usd ks1000 K ij xeZd jusij og
fuEu izd kj fo?kfVr gksrk gS]2NO2(g)
2NO(g)
+ O2(g). lkE;oLFkkfu;a
rkd KP 100 atm. gS
A fo'ys
"k.k
d jusij irk py k fd lkE; ij O2 d k vkaf'kd nkc
0.25 atm. gS
A lkE; ij NO2 d k vkaf'kd nkc D;k
gksxk%
(1) 0.03
(2) 0.25
(3) 0.025
(4) 0.04
18. A + 2B
2C vfHkfØ ;k d sfy , vxzvfHkfØ ;k o
i'p vfHkfØ ;knj Ø e'k%1 × 10–4 rFkk2.5 × 10–2 gSA
vfHkfØ ;k d sfy , lkE;koLFkk fu;rkad K d k eku gksxk%
(1) 1 × 10–4
(2) 2.5 × 10–2
(3) 4 × 10–3
(4) 2.5 × 102
19. fuEu vfHkfØ ;k
CaCO3(s)
CaO(s) +
CO2(g), Kc = 0.05 mole/litre.
CO2(g), d sfy , Kc = 0.05 mole/litre gSrc] bl
What is the minimum mass of CaCO3(s) (below
which it decomposes completely) required to
establish equilibrium in a 6 litre container for the
reaction :
vfHkfØ ;k d sfy , ,d 6 y hVj d sik=k esalkE; LFkkfir
d jusd sfy ;svko';d CaCO3 (s) d kU;wure nzO;eku
D;k gS¼ft ld suhps;g iw.kZr;k fo?kfVr gkst krk gS½ \
(1) 30 g
(1) 30 g
(2) 24.6 g
(2) 24.6 g
(3) 40.9 g
(3) 40.9 g
(4) 8.0 gm
(4) 8.0 gm
RESONANCE
XI-XII ResoMost_STP 4
20. In the equilibrium reaction A(g) + 2B(g) + heat
AB2(g), the reaction shifts in forward
20. ,d lkE; vfHkfØ ;k A(g) + 2B(g) + Å "ek
AB2(g)
esavfHkfØ ;k vxzfn'kk esafoLFkkfir gksxh ;fn ;gk¡:
direction if there is:
(1) vfHkfØ ;k ik=k d svk;ru es
a] o`f) d h t krh gSA
(1) an increase in the volume of the reaction
(2) rki es
ad eh d h t krh gSA
vessel.
(3) ra
=k d snkc esao`f) d h t krh gSA
(2) a decrease in temperature.
(4) A(g) d h lka
nzrk esao`f) d h t krh gSA
(3) an increase in system pressure.
(4) a decrease in concentration of A(g).
21. Two nodal planes of (bonding) electron cloud
exist in :
(1) a sigma () bond by s-p overlap
(2) a sigma () bond by p-p overlap
(2) p-p vfrO;kiu }kjk ,d flXek () cU/k
(3) p-p vfrO;kiu }kjk ,d  cU/k
(4) a sigma () bond by s-s overlap
(4) s-s vfrO;kiu }kjk ,d flXek () cU/k
22. No excitation of electrons of central atom occurs
during formation of which of the following
molecules?
2SO2(g) + O2(g) as Kp =
3P0
(2   )(1 –  )2
Upon increasing the pressure at equilibrium :
(2) PCl5
(4) NH3
23. lkE; nkc P0 ij SO3 d sfo;ks
t u d h ek=kk d k Kp ls
lEcU/k fuEu gS%
2SO3(g)
2SO2(g) + O2(g),Kp =
3P0
(2   )(1 –  )2
lkE; ij nkc c<+kusij %
(2)  o Kp nks
uksaifjofrZr ughagksxsaA
(3)  does not changes, but Kp changes.
(4)  changes, but Kp does not changes.
PCl3(g) + Cl2(g);
H = +ve, taking place in a closed container,
initially starting with only PCl5, the value of
observed vapour density at equilibrium ______
with decrease in temperature.
(1) Decreases
(2) Increases
(3) Remains constant
(4) First decreases, then increases
RESONANCE
d sby sDVªkWuksad k mÙkst u ughagksrk gS\
(1)  rFkk Kp nks
uksaifjofrZr gkst k;sxsaA
(1) Both  and Kp changes.
(2) Neither  nor Kp changes.
24. For the reaction PCl5(g)
22. fuEu es
alsfd l v.kqd sfuekZ.kd snkSjku d sfUnz; ijek.kq
(1) CH4
(3) BCl3
(2) PCl5
(4) NH3
23. The degree of dissociation of SO 3,  at
equilibrium pressure P0 is related with Kp for
2SO3(g)
uksMy ry ik;st krsgSa%
(1) s-p vfrO;kiu }kjk ,d flXek () cU/k
(3) a pi () bond by p-p overlap
(1) CH4
(3) BCl3
21. fuEu es
alsfd lesabysDVª
kW
u vHkz(electron cloud) d snks
(3)  ughacny s
xk]y sfd u Kp cny t k;sxkA
(4)  cny t k;s
xk]y sfd u Kp ughacny sxkA
24. vfHkfØ ;k PCl5(g)
PCl3(g) + Cl2(g) ; H =
+ve, d ks,d ca
n ik=k esad jk;k t krk gSA izkjEHk esa
d soy ]PCl5 d ksfy ;k t krk gSA rc rkieku esad eh d s
lkFklkE; ij izs
f{kr ok"i ?kuRo d seku es
a_________
gksrh gSA
(1) d eh
(2) o`
f)
(3) eku fu;r jgrk gS
(4) igy sd eh rFkk fQ j o`
f) gksrh gS
XI-XII ResoMost_STP 5
25.
A(s)
2B(g) + C(g)
The above equilibrium was established by initially
taking A(s) only. At equilibrium, B is removed so
that its partial pressure at new equilibrium
becomes 1/3rd of original total pressure. Ratio
of total pressure at new equilibrium and at initial
equilibrium will be :
(1) 2/3
(3) 5/3
(2) 14/13
(4) 17/19
26. The equilibrium constant Kp for the reaction
25.
A(s)
2B(g) + C(g)
mDr lkE; d ks
]izkjEHkesad s
oy A(s) y s
d j LFkkfir fd ;k
x;kA lkE; ij]B d ksbl izd kj i`Fkd fd ;kt krkgSfd
u;slkE; ij bld k vkaf'kd nkc] okLrfod ¼ewy ½ d qy
nkc d k 1/3rd gkst krk gSA rc]u;slkE; ij d qy nkc
rFkk izkjfEHkd lkE; ij d qy nkc d k vuqikr gksxk %
(1) 2/3
(3) 5/3
(2) 14/13
(4) 17/19
26. 494ºC ij vfHkfØ ;k N2O4 (g)
2NO2 (g) d s
be 640 mm of Hg. At what total pressure will
N2O4 (g) be half dissociated ?
fy , l kE;koLFkk fu;rkad Kp , Hg d k 640 mm ik;k
x;kgSrksfd l d qy nkc ij N2O4 (g) vk/khfo;ksft r
gkst k,xh \
(1) 320 mm of Hg
(2) 480 mm of Hg
(1) 320 mm of Hg
(2) 480 mm of Hg
(3) 360 mm of Hg
(4) 1920 mm of Hg
(3) 360 mm of Hg
(4) 1920 mm of Hg
N2O4 (g)
2NO2 (g) at 494ºC is found to
27. The oxidation states of Sulphur in the anions
SO32– , S2O42– and S2O62– follow the order :
rFkk S 2 O 6 2– esa l YQ j d h
vkWDlhd j.k voLFkk d k Ø e gS%
27. SO 32– , S 2 O 4 2–
(1) S2O62– < S2O42 < SO32–
(2) S2O42– < SO32– < S2O62–
(1) S2O62– < S2O42 < SO32–
(2) S2O42– < SO32– < S2O62–
(3) SO32– < S2O42– < S2O62–
(4) S2O42 < S2O62– < SO32–
(3) SO32– < S2O42– < S2O62–
(4) S2O42 < S2O62– < SO32–
28. Match List-I (Compounds) with List-II (Oxidation
states of Nitrogen) and select answer using the
codes given below the lists :
List-I
List-II
(a) NaN3
(1) +5
(b) N2H2
(2) +2
(c) NO
(3) –1/3
(d) N2O5
(4) –1
Code %
28. lw
p h-I (;kSfxd ) d kslwp h-II (ukbVªkst u d h vkWDlhd j.k
voLFkk) d slkFk lqesfy r d hft , rFkk lwfp;ksad suhps
fn;sx;sd ksM d k mi;ksx d jrsgq;sviuk mÙkj pqfu;sA
lw
p h-I
lw
p h-II
(a) NaN3
(1)
+5
(b) N2H2
(2)
+2
(c) NO
(3)
–1/3
(d) N2O5
(4)
–1
d ks
M:
(a)
(b)
(c)
(d)
(1) 3
4
2
1
(2) 4
3
2
(3) 3
4
(4) 4
3
(b)
(c)
(d)
(1) 3
4
2
1
1
(2) 4
3
2
1
1
2
(3) 3
4
1
2
1
2
(4) 4
3
1
2
RESONANCE
(a)
XI-XII ResoMost_STP 6
29. Which reaction does not represent auto redox
or disproportionation reaction :
29. d kS
ulh vfHkfØ ;k Lor% vkWDl hd j.k&vip;u vFkok
fo"kekuqikfrd vfHkfØ ;k d ksiznf'kZr ughad jrh gS%
(1) Cl2 + OH  Cl + ClO + H2O
(2) 2H2O2  H2O + O2
(1) Cl2 + OH–  Cl– + ClO3– + H2O
(2) 2H2O2  H2O + O2
(3) 2Cu+  Cu2+ + Cu
(3) 2Cu+  Cu2+ + Cu
(4) (NH4)2Cr2O7  N2 + Cr2O3 + 4H2O
(4) (NH4)2Cr2O7  N2 + Cr2O3 + 4H2O
–
–
–
3
–
30. In the reaction A  n 2 + xe  A  n1 Here x will
30. vfHkfØ ;k A  n 2 + xe  A  n1 es
a] ;gk¡x fuEu gksxk %
–
be:
(1) n1 + n2
(1) n1 + n2
(3) n1 – n2
(2) n2 – n1
(3) n1 – n2
(2) n2 – n1
(4) n1. n2
(4) n1. n2
31. fuEu es
alsfd l ;kSfxd esajs[kkafd r d kcZu sp2 lad j.k
31. In which of the following species underlined
carbon is sp2 hybridised ?
j[krkgSA
(1) CH3 – CH2 – Cl
(1) CH3 – CH2 – Cl
(2) CH3 – C  C – OH
(2) CH3 – C  C – OH
(3) CH3 – CH  C  CH – Cl
(3) CH3 – CH  C  CH – Cl
(4) CH3 – CO – CH2 – Br
(4) CH3 – CO – CH2 – Br
32. The number of carbon atoms in the longest
possible chain in the following molecule is :
(1) 10
(3) 8
33.
32. fuEu v.kqes
alclsy Ech J`a[ky k esad kcZu ijek.kqd h
la[;k gS%
(1) 10
(3) 8
(2) 9
(4) 7
compound is :
(2) 9
(4) 7
;kSfxd gS%
33.
(1) Alicyclic heterocyclic
(1) ,fy lkbfDy d fo"kepØ h;
(2) Saturated alicyclic
(2) la
r`Ir ,fy lkbfDy d
(3) Saturated heterocyclic
(3) la
r`Ir fo"kepØ h;
(4) Unsaturated homocyclic
(4) va
l r`Ir lepØ h;
RESONANCE
XI-XII ResoMost_STP 7
34.
34.
In above compound total number of 2º hydrogen
atoms are :
mijks
Dr ;kS
fxd esa2º gkbMª
ks
t u ijek.kqv ks
ad hd q
y la
[;k
gS%
(1) 3
(3) 6
(1) 3
(3) 6
(2) 18
(4) 9
35. Neohexane contains
35. fu;ks
gSDlSu esagksrsgS&
(1) Four 1º carbon atoms and two 2º hydrogen
(2) Twelve 1º hydrogen and one 3º carbon
(3) Two 2º carbon & one 4º carbon
(4) One 4º carbon and two 3º hydrogen
36. Correct IUPAC name for
is :
(4) 1–Ethoxypropan–1–amine
37. How many functional group present in given
structure :
(2) 3
(4) 5
38. The given compound can not show :
==
RESONANCE
36. fuEu es
als
d k IUPAC uke gS%
(1) 1–,FkkW
Dlh–1–,ehuksizksisu
(2) 1–,ehuks
a–1–,FkkWDlhizksisu
(3) 1–,FkkW
Dlh–2–izksisukWy
(4) 1–,FkkW
Dlhizksisu–1–,ehu
37. fuEu la
jpuk esamifLFkr d qy fØ ;kRed lewg gksxsa%
(1) 4
(3) 2
(2) 3
(4) 5
38. fn;k x;k ;kS
fxd ughan'kkZld rk gS%
H
Cl
(1) Positional isomerism
(2) Geometrical isomerism
(3) Optical isomerism
(4) Metamerism
(2) ckjg 1º gkbMª
kst u vkSj ,d 3º d kcZu
(4) ,d 4º d kcZ
u vkSj nks3º gkbMªkst u
(3) 1–Ethoxy–2–propanol
(1) 4
(3) 2
(1) pkj 1º d kcZ
u ijek.kqvkSj nks2º gkbMªkst u
(3) nks2º d kcZ
u vkSj ,d 4º d kcZu
(1) 1–Ethoxy–1–aminopropane
(2) 1–Amino–1–ethoxypropane
Br
(2) 18
(4) 9
==
Br
H
Cl
(1) fLFkfr leko;ork
(2) T;kfefr leko;ork
(3) iz
d kf'kd leko;ork
(4) e/;ko;ork
XI-XII ResoMost_STP 8
39. What is the relation between CH3–O–CH2–CH2–
CH3 and
39. CH3–O–CH2–CH2–CH3 vkS
j
.
d se/; D;k laca/k gSA
(1) Chain isomers
(1) Ja
`[ky k leko;oh
(2) Positional isomers.
(2) fLFkfr leko;oh
(3) Homologs
(3) let kr
(4) Metamers
(4) e/;ko;oh
40. How many major product are obtain when
following compound react with NH2OH :
40. t c fn;sx;s;kS
fxd d hNH2OH d slkFkvfHkfØ ;kd h
t krh gS]rksizkIr d qy eq[; mRikn gksxsa%
&
(1) 5
(3) 4
&
(2) 3
(4) 8
41. Which of the following will not give positive
iodoform test.
(1) 5
(3) 4
(2) 3
(4) 8
41. fuEu es
alsd kSu /kukRed vk;MksQ keZijh{k.kughansrsgSA
(1)
(1)
(2)
(2)
(3)
(3)
(4)
(4)
42. Which of the following will not show isomerism?
42. fuEu es
alsd kSu leko;ork ughan'kkZ,xk \
(1)
(1)
(2) CH3–CH2–CHO
(2) CH3–CH2–CHO
(3) CH2=CH–Cl
(3) CH2=CH–Cl
(4) Cl–CH2–CH2–Cl
(4) Cl–CH2–CH2–Cl
RESONANCE
XI-XII ResoMost_STP 9
43. CH3 – CH2 – NH – CHO ; CH3  CH  CHO
|
NH2
I
43. CH3 – CH2 – NH – CHO ; CH3  CH  CHO
|
NH2
I
II
II
Which type of isomerism is observed between
I and II.
I rFkk II d se/;
(1) Chain isomers
(2) fLFkfr leko;oh
(2) Position isomers
(1) J`
a[ky k le.ko;oh
(3) fØ ;kRed leko;oh
(3) Functional isomers
(4) e/;ko;oh
(4) Metamers
44. Which of the following compounds does not
have geometrical isomers :
(1) 2-Pentenoic acid
(3) 3-Pentenoic acid
lEcU/k crkb;sA
(2) 2-Butenoic acid
(4) 3-Butenoic acid
45. Identify (Z) isomers in the following compound
44. fn;sx;s;kS
fxd kses
ad kS
u T;kferh; lek;orkughan'kkZ
rk%
(1) 2-is
UVhukWbd vEYk
(2) 2-C;w
VhukWbd vEYk
(3) 3-is
UVhukWbd vEYk
(4) 3-C;w
VhukWbd vEYk
45. fn;sx;s;kS
fxd ksaesa(Z) leko;oh igpkfu;sA
(1)
(1)
(2)
(2)
(3)
(3)
(4)
(4)
46. Total number of chiral centers present in
following molecule is :
(1) 5
(3) 11
RESONANCE
(2) 9
(4) 12
46. fn;sx;sv.kqes
afd jSy d sUnzd h d qy la[;k gS%
(1) 5
(3) 11
(2) 9
(4) 12
XI-XII ResoMost_STP 10
47. Which of the following sawhorse representation
is correct for the given newman projection.
47. fuEu fns
;sx;sU;wekWu iz{ksi.kd klghlkSgklZiz{ksi.klw
=k
gSA
(1)
(1)
(2)
(2)
(3)
(3)
(4)
(4)
48. How many steroisomers are possible around
double bond in following compound.
48. fn;sx;s;kf
Sxd es
af}cU/kd slkis
{kfd rusf=kfoe leko;oh
lEaHko gS%
CH3
CH3
|
|
C  CH — C  CH — C 2H5
|
Ph
CH3
CH3
|
|
C  CH — C  CH — C 2H5
|
Ph
(1) 4
(3) 3
(1) 4
(3) 3
RESONANCE
(2) 6
(4) 8
(2) 6
(4) 8
XI-XII ResoMost_STP 11
Cl / h
 4-structural products.
49. X 2
Cl / h
 4-lja
49. X 2
p ukRed mRikn
Identify 'X'
'X' d ksigpkfu;s%
(1)
(1)
(2)
(2)
(3)
(3)
(4)
(4)
50. Observe the following compound and select +ve
& – ve test respectively.
50. fuEu ;kS
fxd ksad k izs{k.k d hft , vkSj +ve vkSj – ve
ijh{k.k d ksØ e'k%pqfu,s
(1) + + + –
(1) + + + –
(2) + + + +
(2) + + + +
(3) + – + –
(3) + – + –
(4) + – – +
(4) + – – +
RESONANCE
XI-XII ResoMost_STP 12
PART–B
PART–B
Straight Objective Type
l h/ksoLrqfu"B izd kj
This section contains 50 multiple choice
questions. Each question has 4 choices (1),
(2), (3) and (4) for its answer, out of which
ONLY ONE is correct.
bl [k.M esa50 cgq& fod Yihiz'u gSaA izR;sd iz
'u d s4
51. Three blocks of masses m1, m2 and m3 are
51. fn[kk;sx;sfp=kd svuq
l kj rhu CykW
d ks
ad snz
O;eku m1,
connected by massless strings as shown on
m2 vkS
j m3 nzO;eku jfgr jLlhls?k"kZ.kjfgr est ij
a frictionless table. They are pulled with a force
T3 = 40 N.If m1=10kg,m2=6 kg and m3 = 4 kg,
the tension T2 will be -
fod Yi (1), (2), (3) rFkk (4) gSa] ft uesalsfl Q Z,d
l gh gSA
j[ksgSA mud ksT3 = 40 U;w
Vu cy ls[kha
p k t krk gSA
;fn m1 = 10 fd xzk, m2 = 6 fd xzkvkS
j m3 = 4 fd xzk
gksrksT2 esaruko gks
xk&
(1) 20 N
(2) 40 N
(1) 20 N
(3) 10 N
(2) 40 N
(4) 32 N
(3) 10 N
(4) 32 N
52. A body of mass 0.1 kg attains a velocity of
10 ms–1. in 0.1 s. The force acting on the body
is :
(1) 10 N
(2) 0.01 N
52. 0.1 kg nz
O;eku d h,d oLrq0.1 s es
a10 ms–1 d kosx
izkIr d jrh gSA oLrqij d k;Zjr cy gSA
(1) 10 N
(2) 0.01 N
(3) 0.1 N
(3) 0.1 N
(4) 100 N
53. It is easier to pull a body than to push,
(4) 100 N
53. fd lhoLrqd ks[kha
p uk]mls/kDd knsuslsT;knkvklku
because-
gks
rk gSD;ksa
fd &
(1) the coefficient of friction is more in pushing
(1) ?k"kZ
.kxq
.kka
d d keku /kDd kns
usij T;knko [khapus
than that in pulling
(2) the friction force is more in pushing than
that in pulling
(3) the body does not move forward when
ij d e gksrk gSA
(2) ?k"kZ
.kcy d keku /kDd kns
usij T;knko [kha
pusij
d e gksrk gSA
pushed.
(3) t c /kDd kfn;kt krkgSrksoLrqvkxsughaf[kld rhA
(4) none of these
(4) mijks
Dr esalsd ks
bZughaA
RESONANCE
XI-XII ResoMost_STP 13

54. A particle moves from position r1  3ˆi  2ˆj  6kˆ

54. ,d d .k] cy
4ˆi  ˆj  3 kˆ N
d s v /khu fLFkfr
to position r2  14 ˆi  13 ˆj  9 kˆ under the action

r1  3ˆi  2ˆj  6kˆ
of force 4ˆi  ˆj  3 kˆ N . The work done by this
d jrk gSA bl cy }kjk fd ;k x;k d k;Zgksxk &
lsfLFkfr

r2  14 ˆi  13 ˆj  9 kˆ
rd xfr
(1) 100 J
force will be
(2) 50 J
(1) 100 J
(3) 200 J
(2) 50 J
(4) 75 J
(3) 200 J
(4) 75 J
55. The potential energy of a body is given by
U = A – Bx3 (where x is the displacement). The
55. fi.M d hfLFkfrt Å t kZU = A – Bx3 (t gk¡x foLFkkiu
gS) gSA bl ij d k;Zjr~cy gksxk&
magnitude of force acting on the particle is
(1) fu;r
(1) constant
(2) proportional to x
(2) x d svuq
ikrh
(3) proportional to x2
(3) x2 d svuq
ikrh
(4) proportional to 1/x
(4) 1/x d svuq
ikrh
56. Colour of light depends on :
56. iz
d k'k d k jax fuHkZj d jrk gS] izd k'k d h
(1) Speed of light
(1) pky ij
(2) Wavelength of light
(2) rja
xnSS/;Zij
(3) Frequency of light
(3) vko`
rhZij
(4) None of these
(4) bueslsfd lh ij Hkh fuHkZ
j ughsad jrk
57. A particle starting from the origin (0,0) moves
57. ,d d .kew
y fcUnq(0,0) lspy d j leRky (x, y) ij
in a straight line in the (x, y) plane Its
,d ljy js[kk esaxfr d jrk gSvkSj d qN le;kUrjky
coordinates at a later time are
ckn bld sfunsZ'kkad
 3,3 The path
of the particle makes with the x– axis an angle
of :
(1) 30°
(2) 45°
(3) 60°
(4) 0°
RESONANCE
 3,3 gkst krsgSrksd .k d siFk
d kx – v{k d slkFk d ks.k cusxk –
(1) 30°
(2) 45°
(3) 60°
(4) 0°
XI-XII ResoMost_STP 14
58. A body moves along an uneven surface with
58. ,d oLrq,d vleku lrg ij lHkhfcUnvks
aij fu;r
constant speed at all points. The normal
pky lspy jgh gSA lM+d }kjk oLrqij vfHky Ec
reaction of the road on the body is :
çfrfØ ;k gS&
(1) maximum at A
(2) maximum at B
(1) A ij vf/kd re
(3) minimum at C
(2) B ij vf/kd re
(4) the same at A, B & C
(3) C ij U;w
ure
(4) A, B o C ij leku
59. Which does not have the same unit as other :
(1) watt–sec
(2) kilowatt-hour
(3) eV
59. fuEu es
alsd kSulhbd kbZvU; bd kbZd sleku ughgSA
(1) okW
V–lS
d .M
(2) fd y ks
okWV-?k.Vk
(3) eV
(4) J-sec
(4) J-lS
d .M
60. A particle moves along a semicircle of radius
10m in 5 second. The average velocity of the
particle is :
(1) 2 ms
60. ,d d .k5 lS
d .M es
a10m f=kT;kd sv) Z
o`
Ùkd svuq
fn'k
xfr d jrk gSA d .k d k vkSl r osx gksxk %
(1) 2 ms–1
–1
(2) 4 ms–1
(2) 4 ms
–1
(3) 2 ms
(3) 2 ms–1
–1
(4) 4 ms–1
(4) 4 ms
–1
61. A wheel complete 2000 revolution to cover the
9.5 km distance, then the diameter of wheel :
(1) 1.5 m
(2) 1.5 cm
(3) 7.5 cm
(4) 7.5 m
RESONANCE
61. ,d ifg;k9.5 km d hnw
jh2000 pDd j esaiwjhd jrk
gSrc ifg;sd k O;kl gksxk :
(1) 1.5 m
(2) 1.5 cm
(3) 7.5 cm
(4) 7.5 m
XI-XII ResoMost_STP 15
62. A body of mass 5 kg is suspended by a spring
balance on a inclined plane as shown in figure.
62. 5 kg nz
O;eku d h,d oLrqfp=kkuq
l kj urry ij fLiz
ax
rq
y kd slkFky Vd hgq
bZgS
A fLiza
x rq
y kd kikB~
;ka
d gks
xk
The spring balance measure :
(1) 50 N
(1) 50 N
(2) 25 N
(3) 500 N
(2) 25 N
(3) 500 N
(4) 10 N
(4) 10 N
63. When the speed of a moving body is doubled :
(1) Its acceleration is doubled
(2) Its momentum is doubled
(3) Its kinetic energy is doubled
(4) Its P.E. is doubled
63. t c xfreku oLrqd h pky nq
qxquh gksrh gS]rc
(1) bld k Roj.k nq
xquk gkst k;sxkA
(2) bld k la
osx nqxquk gkst k;sxkA
(3) bld h xfrt Å t kZnq
xquh gkst k;sxh
(4) bld h fLFkfr Å t kZnq
xquh gkst k;sxhA
64. A book is lying on the table. What is the angle
between the action of the book on the table and
the reaction of the table on the book :
(1) 0º
(2) 30º
(3) 45º
64. ,d iq
Lrd es
t ij j[khgS
A est ij oLrqd hfØ ;krFkk
iqLrd ij est d h izfrfØ ;k d se/; d ks.k gksxk %
(1) 0º
(2) 30º
(3) 45º
(4) 180º
(4) 180º
65. Unit of stress is :
65. iz
frcy d h bd kbZgSA
(1) N/M
(1) N/M
(2) N – M
(2) N – M
(3) N/M2
(3) N/M2
(4) N – M2
(4) N – M2
RESONANCE
XI-XII ResoMost_STP 16
66. The resistance R =
V
where V = 100 + 5V
i
and i = 10 + 0.2 amperes. What is the total
error in R :
(1) 5%
(2) 7%
66. iz
frjs/kR =
V
i
t gkWV = 100 + 5V rFkk i =10 + 0.2
,Eih;jA R easd qy =kqfV gksxh:
(1) 5%
(2) 7%
(3) 5.2%
(3) 5.2%
5
(4)
2
67. A rabbit walk for 4s with a velocity of |t – 2| m/s
in a straight line, where t is time in seconds. It
covers a distance.
(1) 2 m
(2) 4m
(3) 6 m
(4) 8 m
68. Which of the following quantities measured
from different inertial reference frames are
same.
(4)
5
2
67. ,d [kjxks
'k ljy js[kk esa|t – 2| m/s d sosx ls
4 lS
d .M rd xfr d jrk gSA t gkWt lSd .M esagSA ;g
nwjh r; d jsxkA
(1) 2 m
(2) 4m
(3) 6 m
(4) 8 m
68. fuEu es
ad kSulhjkf'k fHkUu&fHkUu t M+Roh; funsZ'krU=k
lsekiusij leku gksxhA
(1) cy
(1) Force
(2) Velocity
(2) os
x
(3) Displacement
(3) foLFkkiu
(4) KE
(4) xfrt Å t kZ
69. The length, breadth and thickness of a block
are given by l=12cm, b = 6 cm and t=2.45 cm.
The volume of the block according to the idea
of significant figures should be :
(1) 1× 102 cm3
(2) 2 × 102 cm3
(3) 1.763 × 102 cm3
(4) none of these
RESONANCE
69. ,d Cy kW
d d h y EckbZl = 12 lseh, pkSMkbZb = 6 lseh
rFkk eksVkbZt = 2.45 l seh gSA l kFkZd vad ksa d h
vfHk/kkj.kk d svuql kj Cy kWd d k vk;ru gksxk %
(1) 1× 102 cm3
(2) 2 × 102 cm3
(3) 1.763 × 102 cm3
(4) bues
alsd ksbZugha
XI-XII ResoMost_STP 17
70. An isolated and charged spherical soap bubble
has a radius ‘ r ‘ and the pressure inside is
atmospheric. If ‘ T ‘ is the surface tension of
soap solution, then charge on drop is:
70. ,d foy fxr rFkkvkos
f'kr xksy kd kj l kcqu d scqy cqy s
d h f=kT;k‘ r ‘ gS,oabl d svUnj nkc ok;qe.My h;
gSA ;fn ‘ T ‘ l kcqu d sfoy ;u d k i`"B ruko gSrks
cwUn ij vkos'k gSA
(1) 2
2rT
0
2rT
(2) 8  r
(3) 8  r
(4) 8  r
(1) 2
rT
2rT
0
0
(2) 8  r
2rT
(3) 8  r
rT
0
0
0
2rT
0
(4) 8  r
71. If  represents the coefficient of viscosity and
2rT
0
71. ;fn  ';kurkxq
.kkad d ksçnf'kZr d jrkgSrFkkT i`"B
T the surface tension, then the dimension of
ruko gSrc
T
is same as that of :

T

d h foek fd ld sleku gksxh :
(1) y EckbZ
(1) length
(2) nz
O;eku
(2) mass
(3) le;
(3) time
(4) pky
(4) speed
72. Two uniform solid balls of same density and
72. nksleka
x Bksl xs
ansft ud k?kuRo leku gSrFkkf=kT;k
of radii r and 2r are dropped in air and fall
r rFkk2r gSmud ksgokes
aNks
Mk+t krkgS
A osÅ /ok/Zkj uhps
vertically downwards. The terminal velocity of
fxjrh gSf=kT;k r d h xsan d k lhekUr os
x 1 cm s–1 gS
the ball with radius r is 1 cm s , then the
–1
terminal velocity of the ball of radius 2r will be
rc f=kT;k2r d hxs
na d klhekUr os
x D;kgkxsk&(mRIykou
(neglect bouyant force on the balls.)
cy d ksux.; ekusa)
(1) 0.5 cm s–1
(1) 0.5 cm s–1
(2) 4 cm s–1
(2) 4 cm s–1
(3) 1 cm s–1
(3) 1 cm s–1
(4) 2 cm s–1
(4) 2 cm s–1
RESONANCE
XI-XII ResoMost_STP 18
73. An incompressible liquid flows through a
horizontal tube as shown in the figure. Then
73. fp=kes
a,d vlEihM; nz
o d ks{kS
frt V;w
c esacgrkgq
vk
n'kkZ;k x;k gSA nzo d k osx ' v ' gS&
the velocity ' v ' of the fluid is :
(1) 3.0 m/s
(1) 3.0 m/s
(2) 1.5 m/s
(3) 1.0 m/s
(2) 1.5 m/s
(3) 1.0 m/s
(4) 2.25 m/s
(4) 2.25 m/s
74. The average velocity of molecules of a gas of
molecular weight M at temperature T is:
(1) 0
74. rki T ij M v .kqHkkj oky h xS
al d sv .kqv ksad k
v kSl r osx gS&
(1) 0
(2)
3 RT
M
(2)
3 RT
M
(3)
8RT
M
(3)
8RT
M
(4)
2RT
M
(4)
2RT
M
75. What amount of heat is to be transferred to
nitrogen in the isobaric heating process for that
gas to perform the work A = 2.0J?
75. lenkch; : i lsxS
l d ksxje d jusij A = 2.0 J d k;Z
d jusd sfy ;sN2 xSl d ksnh x;h Å "ek d k eku Kkr
d jksA
(1) 4 J
(1) 4 J
(2) 3 J
(2) 3 J
(3) 5 J
(3) 5 J
(4) 7 J
(4) 7 J
RESONANCE
XI-XII ResoMost_STP 19
76. Which of following statement is correct :
(1) A particle may have momentum but not
76. fuEu es
alsd kSulk d Fku lgh gS&
(1) ,d d .kxfrt Å t kZd sfcukla
osx j[kld rkgSA
kinetic energy
(2) A particle may have kinetic energy but not
(2) ,d d .kla
osx d sfcukxfrt Å t kZj[kld rkgSA
momentum
(3) ,d oLrqxfrt Å t kZd sfcukla
osx j[kld rhgSA
(3) A body may have momentum but not
(4) ,d oLrqla
osx d sfcukxfrt Å t kZj[kld rhgSA
kinetic energy
(4) A body may have kinetic energy but not
momentum
77. Two small spheres of equal mass, and
heading towards each other with equal
speeds, undergo a head-on collision (no
external force acts on system of two spheres).
Then which of the following statement is
77. nksN ks
Vsxksy st ksfd l eku nzO;eku d sgSrFkk ,d
nwl jsd h rjQ l eku pky l spy rsgSrFkk l Eeq[k
(head on) VDd j d jrsgS
A ¼nksuksxksy sd sfud k;
ij d ksbZckº; cy d k;Zjr ughagS½ rc fuEu esal s
correct ?
d kSul k d Fku l R; gS&
(1) Their final velocities must be zero.
(1) mud svfUre os
x 'kwU; gksaxsA
(2) Their final velocities may be zero.
(2) mud svfUre os
x 'kwU; gksl d rsgSA
(3) Each must have a final velocity equal to
(3) iz
R;sd d k vfUre osx]nwl jsd sizkjfEHkd osx d s
the other’s initial velocity.
(4) Their velocities must be reduced in
magnitude
78. The moment of inertia of a door of mass m,
length 2  and width  about its longer side is
cjkcj gksxkA
(4) mud sos
x ifjek.k esa?kVsaxsA
78. m nz
O;eku 2 y EckbZrFkk pkSM+kbZd snjokt sd kcM+h
Hkqt k d sifjr%t M+Ro vk?kw.kZgksxk &
(1)
11 m 2
24
(1)
11 m 2
24
(2)
5 m2
24
(2)
5 m2
24
(3)
m 2
3
(4) none of these
RESONANCE
(3)
m 2
3
(4) bueslsd ks
bZugha
XI-XII ResoMost_STP 20

79. Torque of a force F = 2 ˆi +3 ˆj acting at a point

79. (1m,0,3m) fcUnqij d k;Z
jr cy F = 2 ˆi + 3 ˆj d kZ
(1m,0,3m) about Z axis is
v{k d sl kis{k cy vk/kw.kZgS&
(1) 3 Nm
(1) 3 Nm
(2)
(2) 130 Nm
130
Nm
(3) 6Nm
(3) 6Nm
(4) 0
(4) 0
80. The rms speed of oxygen molecules in a gas
is . If the temperature is doubled and the O2
molecule dissociate into oxygen atoms, the
rms speed will become
80. fd lh xS
l esavkWDlht u v.kqv ksad koxZek/; ewy osx 
gSA ;fn rki d ksnqxquk d j fn;k t k; rFkk vkWDlht u
v.kqvkWDlht u ijek.kqv ksaesaVwV t k; rksoxZek/; ewy
pky gksxhA
(1) 
(1) 
(2) 2
(3) 2 
(2) 2
(4) 4
(3) 2 
(4) 4
81. Ball A of mass m after sliding from an inclined
81. m nz
O;eku d h,d xs
na]ur ry lsfQlyd j]fojkekoLFkk
plane, strikes elastically another ball B of same
esafLFkr leku nzO;eku d h nwl jh xsan B lsizR;kLFk
mass at rest. Find the minimum height H so
that ball B just completes the circular motion:
VDd j d jrh gSA U;wure Å ¡p kbZH d k eku Kkr d jks]
ft llsfd xsan B, o`Ùkh; xfr d ksiwjk d j ld sA
(1) H = 3R
(2) H = 2R
(1) H = 3R
(3) H =
5R
2
(4) H = 4R
(2) H = 2R
(3) H =
5R
2
(4) H = 4R
RESONANCE
XI-XII ResoMost_STP 21
82. Two blocks are in contact on a frictionless
82. nksCy kW
d ?k"kZ.kjfgr l rg ij l Eid Zesaj[ksgq;sgSA
table. One has mass m and the other 2m. A
,d d k nzO;eku m o nwl jsd k nzO;eku 2m gSA
force F is applied on 2m as shown in the
figure. Now the same force F is applied from
the right on m. In the two cases respectively,
fp=kkuql kj 2m nzO;eku ij ,d cy F y xk;k t krk
gSA vc ;fn m nzO;eku ij l eku cy F, nka;h rjQ
the ratio of force of contact between the two
l sy xk;k t krk gSrksØ e'k% bu nksuksafLFkfr;ksaesa
blocks will be :
Cy kWd ksd se/; l Eid Zcy d k vuqikr gksxk –
(1) same
(1) l eku
(2) 1 : 2
(2) 1 : 2
(3) 2 : 1
(3) 2 : 1
(4) 1 : 3
(4) 1 : 3
83. Specific heat of ideal gas :
(1) Cv  T
(2) Cv 
1
T
83. vkn'kZxS
l d h fof'k"V Å "ek &
(1) Cv  T
(2) Cv 
1
T
(3) C v  T 3
(3) C v  T 3
(4) C v does not depend on temperature
(4) CV rki ij fuHkZ
j ugha d jrk gSA
RESONANCE
XI-XII ResoMost_STP 22
84. A velocity-time graph of two vehicals A & B
starting from rest at the same time is given in
the figure. The statements which is correct
from graph.
84. fojkekoLFkk lsleku le; ij xfr çkjEHk d jusoky h
nksxkM+h;k¡A o B d sosx&le; vkjs[kfp=kesafn;sx;s
gSA vkjs[k lsd ksulk d Fku lR; gSA
(1) Acceleration of A is always greater than that
of B
(1) A d k Roj.k ges
'kk B lsvf/kd gSA
(2) Acceleration of B is always greater than that
(2) B d k Roj.k ges
'kk A lsvf/kd gSA
of A.
(3) A o B d k Roj.k vpj gS
A
(3) Acceleration of A & B is constant.
(4) d q
N ugh d g ld rsgSA
(4) Cannot say
85. A projectile is launched with an initial velocity

) ˆi  (3 [email protected]
) ˆj
85. ,d iz
{ks
I; d kiz
{ks
i.kos
x v 0  (2 [email protected]

v 0  (2 m / s) ˆi  (3 m / s) ˆj . At the top of the
trajectory, the velocity of the particle is(1)
22  3 2 m/s
(2) 2 m/s
(3) 3 m/s
(4) 5 m/s
86. A vehicle can travel round a curve at a higher
speed when the road is banked than when
the road is level. This is because
(1) banking increases the coefficient of
gSA bld siFk d smPpre fcUnqij d .k d k os
x gks
xk&
(1)
22  3 2 m/s
(2) 2 m/s
(3) 3 m/s
(4) 5 m/s
86. ,d xkM+
hfd lheksM+ij lery lM+d d hvis{kk>qd h
gqbZlM+d ij vf/kd rst h lseqM+ld rh gSD;ksfd
(1) lM+
d d k >qd ko ?k"kZ.k xq.kkad c<+krh gSA
friction
(2) lM+
d d k >qd ko f=kT;k c<+krh gSA
(2) banking increases the radius,
(3) vfHky Ec iz
frfØ ;k d k ,d {kSfrt ?kVd gksrk gSA
(3) the normal reaction has a horizontal
(4) t c lM+
d >q
d hgq
bZgks
rhgSrksd kj d kHkkj ur ry
component,
d svuqfn'k uhpsd h rjQ d k;Zd jrk gSA
(4) when the track is banked the weight of
the car acts down the incline.
RESONANCE
XI-XII ResoMost_STP 23
87. For four particles A, B, C & D, the velocities of
87. pkj d .kks
aA, B, C rFkkD d sfy , ,d d sl kis{k nwl js
one with respect to other are given as V DC is
d sosx bl izd kj gSA
20 m/s towards north, V BC is 20 m/s towards
V BC 20 m/s
east and V BA is 20 m/s towards south. Then
nf{k.k d h vksj gSrks V DA gS&
V DA is :
(1) 20 m/s mÙkj d h vks
j
(1) 20 m/s towards north
(2) 20 m/s nf{k.k d h vks
j
(2) 20 m/s towards south
(3) 20 m/s iw
oZd h vksj
(3) 20 m/s towards east
(4) 20 m/s if'pe d h vks
j
V DC 20 m/s mÙkj
iwoZ d h vksj gS rFkk
d h vksj gS]
V BA 20 m/s
(4) 20 m/s towards west
88. The velocity - time graph of a particle is as
88. fd lh d .k d k os
x le; oØ çnf'kZr gS&
shown in figure
(1) It moves with a constant acceleration
(1) ;g ges
'kk fu;r Roj.k lsxfreku gSA
throughout
(2) ;g ges
'kkfu;r ifjek.kd sRoj.klspyrkgSijUrq
(2) It moves with an acceleration of constant
Roj.kd hfn'kkçR;s
d nksls
d .M d sckn cny t krhgS
A
magnitude but changing direction at the end of
(3) d .k d k foLFkkiu 'kw
U; gSA
every two second
(4) d .k d k os
x t = 4 lsd .M ij 'kwU; gSA
(3) The displacement of the particle is zero
(4) The velocity becomes zero at t = 4 second
89. A body is pulled along a rough horizontal
surface with a velocity 6 m/s. If the body comes
to rest after travelling 9m, then coefficient of
2
sliding friction, is- (Take g = 10 m/s )
(1) 0.2
(2) 0.4
(3) 0.5
(4) 0.6
89. ,d oLrq[kq
jnjh {ksfrt lrg d slekUrj 6 [email protected] s
osx ls[khaph t krh gS
A ;fn oLrq9 eh- py usd sckn
fojkekoLFkk esavk t krh gSrksxfrt ?k"kZ
.k xq
.kkad d k
eku gksxk& (g = 10 [email protected])
(1) 0.2
(2) 0.4
(3) 0.5
(4) 0.6
RESONANCE
XI-XII ResoMost_STP 24
90. Two blocks A and B with mass 4 kg and 6 kg
90. nksxq
Vd sA rFkkB ft ud knzO;eku Ø e'k%4 kg vkSj 6
respectively are connected by a stretched
kg gS
A mUgsa,d [khap h gqbZfLçax lsft ld k nzO;eku
spring of negligible mass as in figure. When
the two blocks are released simultaneously
ux.; gSlst ksM+k x;k gSrkst c nksuksaxqVd ksad ks,d
the initial acceleration of B is 1.5 m/s 2
lkFk NksM+k t krk gSrksB d k Roj.k if'pe d h vksj
westward. The acceleration of A is:
1.5 m/s2 gS
A A d k Roj.k gksxk :
2
1.5m/s
2
1.5m/s
A
A
B
B
smooth
smooth
(1) 1 m/s2 westward
(1) 1 m/s2 if'pe d h vks
j
(2) 2.25 m/s2 eastward
(2) 2.25 m/s2 iw
oZd h vksj
(3) 1 m/s2 eastward
(4) 2.75
m/s2
(3) 1 m/s2 iw
oZd h vksj
westward
(4) 2.75 m/s2 if'pe d h vks
j
91. Ball 1 collides head on with an another identical
91. xs
an 1 nwl jh ,d leku xsan 2 t ksfojkekoLFkk esagS]ls
ball 2 at rest. Velocity of ball 2 after collision
lhs
/ksVd jkrhgSA VDd j d sckn xsa
n 2 d kosx xs
an 1 d s
becomes two times to that of ball 1 after
os
x d knq
xq
ukgkst krkgS
A nks
uks
axs
nksd se/; çR;koLFkku
a
collision. The coefficient of restitution between
the two balls is :
xq.kkad Kkr d jks?
(1) e = 1/3
(1) e = 1/3
(2) e = 1/2
(2) e = 1/2
(3) e = 1/4
(3) e = 1/4
(4) e = 2/3
(4) e = 2/3
92. A wire has a mass (0.3 ± 0.003)g, radius
92. ,d rkj d k nz
O;eku (0.3 ± 0.003)g, f=kT;k
(0.5 ± 0.005)mm and length (6 ± 0.06)cm. The
(0.5 ± 0.005)mm rFkk y EckbZ(6 ± 0.06)cm gSrks
maximum
percentage
error
in
the
bld s?kuRo d sekiu esavf/kd re çfr'kr =kqfV gS
measurement of its density is :
(1) 1
(1) 1
(2) 2
(2) 2
(3) 3
(3) 3
(4) 4
(4) 4
RESONANCE
XI-XII ResoMost_STP 25
93. In a collision between two solid spheres,
velocity of separation along the line of impact
(assume no external forces act on the
system of two spheres during impact) :
(1) cannot be greater than velocity of approach
93. nksBks
l xks
y ksad hVDd j esa]VDd j js[kkd svuqfn'knwj
t kusd k osx ¼;g ekfu;sfd nksxksy ks
ad sfud k; ij
VDd j d snkSjku d ksbZckº; cy d k;Zugh d jrk gS½
(1) ikl vkusd sos
x l sT;knk ughagksl d rk
(2) ikl vkusd sos
x l sd e ughagksl d rk
(2) cannot be less than velocity of approach
(3) cannot be equal to velocity of approach
(3) ikl vkusd sos
x d scjkcj ugh gksl d rk
(4) bues
al sd ksbZugha
(4) none of these
94. Mark the wrong statement :
(1) All S.H.M.’s have fixed time period (i.e.
periodic)
94. vlR; d Fku gS
(1) iz
R;sd ljy vkorZxfr] vkorhZgksrh gSA
(2) lHkh vkorhZxfr;k¡
]ljy vkorZxfr;k¡gksrh gSa
(2) All motions having same time period are
S.H.M.
(3) ljy vkorZxfr es
ad qy Å t kZ]vk;ke d soxZd s
(3) In S.H.M. total energy is proportional to
lekuqikrh gksrh gS
square of amplitude
(4) ljy vkoZ
r xfr esad y k fu;rkad (phase con-
(4) Phase constant of S.H.M. depends upon
stant) d k eku iz
kjfEHkd izfrcU/kksaij fuHkZj d jrk gS
initial conditions
95. At the same temperature and pressure the
95. leku rki rFkknkc ij ,d f}ijkek.kq
d xSl d s?kuRo
densities of two diatomic gases are d1 and d2,
Ø e'k% d1 rFkk d2 gSA bu xSl ksaesa/ofu d sosxksad k
The ratio of velocities of sound in these gases
will be
vuqikr gksxkA
d1
(1) d
2
d1
(1) d
2
(2)
d2
d1
(2)
d2
d1
(3)
d1
d2
(3)
d1
d2
(4)
d2
2
2
1
d
RESONANCE
(4)
2
d2
2
d1
XI-XII ResoMost_STP 26
96. If , ,  are linear, superficial and cubical
expansivity of a solid, then (1)  :  :  = 1 : 2 : 3
(2)  :  :  = 3 : 2 : 1
(3)  :  :  = 2 : 3 : 1
(4)  :  :  = 3 : 1 : 3
96. ;fn , ,  Ø e'k%Bks
l d sjs[kh;]{ks=kh; rFkkvk;ru
izl kj xq.kk¡d gks]rks(1)  :  :  = 1 : 2 : 3
(2)  :  :  = 3 : 2 : 1
(3)  :  :  = 2 : 3 : 1
(4)  :  :  = 3 : 1 : 3
97. There is a set of four tuning forks, one with the
97. pkj Lofj=kks
ad k,d lewg gSft uesa,d 550 gV~Zt d h
lowest frequency vibrating at 550 Hz. By using
U;w
ure vko`fÙk d slkFk d EiUu d j jgk gSA ,d lkFk
any two tuning forks at a time, the following
,d le; ij nksLofj=kksad ksmi;ks
x esay sd j 1, 2, 3,
beat frequencies are heard: 1, 2, 3, 5, 7, 8.
The possible frequencies of the other three
5, 7, 8 foLia
n vko`
fÙk;k¡lquh t krh gSA rksvU; rhu
forks are:
Lofj=kksad h laHkkfor vko`fÙk;k¡gksaxh &
(1) 552, 553, 560
(1) 552, 553, 560
(2) 557, 558, 560
(2) 557, 558, 560
(3) 552, 553, 558
(3) 552, 553, 558
(4) 551, 553, 558
(4) 551, 553, 558
98. A source S having frequency 600 Hz is kept at
rest in the bed of a flowing river. Find out the
frequency detected by a stationary detector
present above the river in air.[Velocity of sound
in water = 1500 m/s ; velocity of sound in
98. ,d 600 Hz vko`
fr d kL=kksr S ,d cgrhgqbZunhd s
ry ij fojke esaj[kkgSA fLFkj izs{kd t ksunhd sÅ ij
gokes
afLFkr gS
A }kjkizs
f{kr vko`
fr gks
xhA [/ofu d kt y
esaosx 1500 m/s ; ok;qesa/ofu d k osx 300 m/s]
air = 300 m/s]
(1) 1500 Hz
(1) 1500 Hz
(2) 600 Hz
(2) 600 Hz
(3) 1200 Hz
(3) 1200 Hz
(4) 300 Hz
(4) 300 Hz
RESONANCE
XI-XII ResoMost_STP 27
99. A tensile force F is applied on all six surfaces
of a cube of side unity then increase in length
of each side will be (Y = young measurement]
 = Pieson ratio½
99. ,d bd kbZ?ku d hl Hkh N %l rgks
aij F ruu l keF;Z
vkjksfir fd ;k t krk gSizR;sd Hkqt k d h y EckbZesa
o`f) gksxh & (Y = ;ax ekikad ] = IokW;l u vuqikr½
F
Y(1  )
F
(1) Y(1  )
(1)
F
(2)
Y(1  )
(2) Y(1  )
F(1  2)
(3)
Y
(3)
F
(4) Y(1  2)
(4) Y(1  2)
F
F(1  2)
Y
F
100.Initially a body is at rest in order to produce a
100. çkjEHk es
a,d oLrq1500 t wy d h ?kw.kZu xfrt Å t kZ
rotational K.E. of 1500 Joule, an angular
mRiUu d jusd sØ e esafojke ij gSA 25 rad/s2 d k
acceleration of 25 rad/s2 is applied for 2 sec.
d ks.kh; Roj.k 2 sec d sfy , vkjksfir fd ;k t krk gSA
Find the moment of inertia of the body is :
(1) 2.1 kgm2
(2) 2.4 kgm2
(3) 1.6 kgm
2
(4) 1.2 kgm2
oLrqd k t M+Ro vk?kw.kZKkr d jksA
(1) 2.1 kgm2
(2) 2.4 kgm2
(3) 1.6 kgm2
(4) 1.2 kgm2
RESONANCE
XI-XII ResoMost_STP 28
PART-C
Straight Objective Type
This section contains 100 multiple choice
questions. Each question has 4 choices (1), (2),
l h/ksoLrqfu"B izd kj
bl [k.M esa100 cgq-fod Yihiz'u gSA izR;sd iz'u d s4
fod Yi (1), (2), (3) rFkk(4) gS, ft uesalsflQ Z,d lgh
(3) and (4) for its answer, out of which ONLY
gSaA
ONE is correct.
101. Endosperm of anigosperm is a ........ structure
101. ,fUt ;ks
LiElZd k Hkw.kiks"k gS,d ........ lajpuk
(1) Haploid
(2) Diploid
(1) vxq
f.kr
(2) f) xq
f.kr
(3) Tetraploid
(4) Triploid
(3) prZ
xq
q
f.kr
(4) f=kxq
f.kr
102. Match the columns
(a)
(b)
(c)
(d)
Column I
Metacentric
Submetacentric
Acrocentric
Telocentric
(i)
(ii)
(iii)
(iv)
Column II
At the top
Almost near the tip
At the middle
Slightly away from middle
(1) a – i, b – iv, c– ii, d – iii
(2) a – ii, b – iv, c– i, d – iii
(3) a – iii, b – iv, c– ii, d – i
(4) a – iv, b – iii, c– i, d – ii
102. d kW
y e lqesfy r d hft ;s
(a)
(b)
(c)
(d)
d kW
y e&II
es
Vkls
fUVª
d
lces
Vkls
fUVª
d
,Ø ks
ls
fUVª
d
Vhy ks
l ks
fUVª
d
d kW
y e-II
(i)
'kh"kZij
(ii) y xHkx 'kh"kZd sfud V
(iii) e/; es
a
(iv) e/; lsFkks
M+
k nw
j
(1) a – i, b – iv, c– ii, d – iii
(2) a – ii, b – iv, c– i, d – iii
(3) a – iii, b – iv, c– ii, d – i
(4) a – iv, b – iii, c– i, d – ii
103. Fat storing plastids are
(1) Amyloplasts
(2) Aleuroplasts
(3) Elaioplasts
(4) All the above
104. The two subunits of ribosomes remain united
at a critical ion level of
103. olk la
xzg.kd kjh y od gSA
(1) ,ekby ks
IYkkWLV
(2) bY;w
jksIy kWLV
(3) bfy ;ks
IYkkWLV
(4) mijks
Dr lHkhA
104. jkbcks
l ksEl d hnksmibd kbZ;k¡fd ld sfØ fVd y vkW;u
Lrj ij la;qDr cuh jgrh gSA
(1) Magnesium
(2) Calcium
(3) Copper
(4) Manganese
105. Which is called direct cell division
(1) eS
Xuhf'k;e
(2) d S
fYl;e
(3) d kW
ij
(4) eS
Xuht
105. d kS
ulk izR;{k d ksf'kd k foHkkt u d gy krk gSA
(1) Mitosis
(2) Amitosis
(1) ekbVks
fll
(3) Meiosis
(4) All cell divisions
(3) fe;kfll
RESONANCE
(2) ,ekbVks
fll
(4) lHkh d ks
f'kd k foHkkt u
XI-XII ResoMost_STP 29
106. How many meiosis are required to produce 10
seeds of Cyperus
106. lkbiz
l d s10 cht cukusd sfy , fd rusfe;kfll
vko';d gksrsgSA
(1) 20
(2) 13
(1) 20
(2) 13
(3) 1.25
(4) 2.5
(3) 1.25
(4) 2.5
107. Telomeres
107. Vhyks
eh;lZA
(1) Initiate RNA synthesis
(2) Help chromoatids to move towards poles
(3) Seal end of chromosomes
(4) Identify correct members of homologous
pairs of chromosomes
(1) RNA la
'y s"k.kd ksizsfjr d jrsgSaA
(2) Ø ks
esfVM~l d ks/kzqoksad h vksj xfr d jusesalgk;rk
d jrsgS
(3) Ø ks
eksl ksEl d slhy ,UM gS
(4) xq
.klw=kksad slet kr ;qXeksad slgh lnL;kasd h
igpku d jrsgS
108. Which is not bounded by a membrane
(1) Plastid
(2) Mitochondrion
(3) Nucleus
(4) Centriole
109. To observe chiasmata & terminalization the
most appropriate stages of meiosis would be–
(1) zygotene, diplotene
108. d kS
ulk ,d d y k ) kjk vkofjr ughagksrk gSa
(1) y od
(2) ekbVks
d kWfUMª;kWu
(3) d s
Uæd
(4) ls
fUVª
;ksy
109. fd ;kTVs
esVk vkSj l hekUrhd j.k d ks ns[kus d s fy ,
v/kZl w=kh foHkkt u d h d kSu lh çkoLFkk mi;qDr gksxh\
(1) t kbxks
Vhu, fMIy ksVhu
(2) leptotene, pachytene
(2) y S
IVksVhu, iSd hVhu
(3) Diplotene, diakinesis
(3) fMIy ks
Vhu, MkbZd kbusfll
(4) Pachytene, zygotene
(4) iS
d hVhu, t kbxksVhu
110. Mitotic spindle is composed of
110. lelw
=khrd Zw(Mitotic spindle) fd ld kcukgksrkgSA
(1) Actin
(2) Actinomyosin
(1) ,fDVu
(2) ,fDVuks
ek;ksflu
(3) Myoglobin
(4) None of the above
(3) ek;ks
Xy ksfcu
(4) mijks
Dr d ksbZugha
111. What would be the number of chromosome of
111. ml ikS
/ksd h,Y;wjksu d ksf'kd kvksaesaxq.klw=kksad hla[;k
the aleurone cells of a plant with 42
fd ruhgks
xhft ld hew
y vxzd ks
f'kd kvks
aes
axq
.klw
=kks
ad h
chromosomes in its root tip cells ?
la[;k 42 gksrh gS\
(1) 42
(2) 63
(1) 42
(2) 63
(3) 84
(4) 21
(3) 84
(4) 21
RESONANCE
XI-XII ResoMost_STP 30
112. Pneumatophores are characteristic features
112. U;w
esVksQ ksl Zfd ld k vfHky k{kf.kd y {k.k gSA
of
(1) gkbfMª
yk
(1) Hydrilla
(2) VkbQ k
(2) Typha
(3) Rhizophora / Sonneratia
(4) Banyan
(3) jkbt ks
Q ksjk / lksusjsf'k;k
(4) cjxn
113. i.kkZ
Hk LrEHk fd lesaik;k t krk gSA
113. Phylloclade is found in
(1) Chrysanthemum
(2) Asparagus
(1) Ø kbt S
UFkhee
(2) ,Lis
jsxl
(3) Ruscus
(4) Opuntia
(3) jLd l
(4) ukxQ uh
114. i.kkZ
Hko`Ur fd lesaik;k t krk gSaA
114. Phyllode is found in
(1) Clematis
(2) Gloriosa
(1) fDy es
fVl
(2) Xy ks
fj;ksl k
(3) Acacia
(4) Dischidia.
(3) vd s
fl;k
(4) fMfLpfM;k
115. Pulvinus is found in
115. i.kZ
o`UrrYi (Pulvinus) fd lesaik;k t krk gSaA
(1) Calotropis
(2) Ocimum
(1) d s
y ksVªkWfil
(2) vkW
flee
(3) Legume plants
(4) Alstonia
(3) y s
X;we ikni
(4) ,YLVks
fu;k
116. Inflorescence is
116. Ikq
"iØ e gSA
(1) Group of flowers
(2) Occurrence of flowers
(3) Arrangement of flowers
(4) Arrangement of flowers on the floral axis
(1) iq
"iksad k lewg
(2) iq
"iksad h mifLFkfr
(3) iq
"iksad k foU;kl
(4) iq
"ih; v{k ij iq"iksad k foU;kl
117. Arrangement of sepals or petals with respect
to each other is called
d gy krk gSA
(1) Venation
(2) Vernation
(3) Aestivation
(4) Phyllotaxy
118. A flower which can be divided into two exactly
equal halves by any vertical division passing
through centre is called
(1) Zygomorphic
(2) Hypogynous
(3) Actinomorphic
(4) Epigynous
RESONANCE
117. cká ny ka
s;kny ksad k,d nwl jsd slkFkO;ofLFkr gksuk
(1) f'kjk foU;kl
(2) ous
Z'ku
(3) iq
"iny foU;kl
(4) oS
Dlhy jh
118. ,d iq
"i ft lsd sUæ lsxqt jusoky sfd lhHkhmnxzry
}kjk nksleku v/kkZ'kksaesack¡Vk t k ld s]d gy krk gSa
(1) ,d O;kllefer
(2) t k;ka
x/kj
(3) f=kT;klefer
(4) t k;kxks
aifjd
XI-XII ResoMost_STP 31
119. Marginal placentation is found in
119. lhekUrh; cht k.MU;kl fd les
aik;k t krk gSA
(1) Solanaceae
(1) lks
y sus
lh
(2) Cruciferae
(2) Ø w
l hQ sjh
(3) Fabaceae / Leguminosae
(4) Asteraceae / Compositae
120. Yeast is important source of
(1) Proteins
(2) Riboflavin
(3) Vitamin C
(4) Sugars
121. Food reserve in Rhodophyta (red algae) is
(3) Q s
csl h / iks,lh
(4) ,LVjs
l h / d Eiksft Vh
120. ;hLV fd ld k egÙoiw
.kZL=kksr gSA
(1) iz
ksVhUl
(2) jkbcks
¶y s
fou
(3) foVkfeu C
(4) 'kd Z
jk
121. jks
Mks
Q kbVk (y ky 'kSoky ) esalafpr Hkkst u gSA
(1) Floridean starch
(1) ¶y ks
fjfM;u LVkWp Z
(2) Laminarian starch
(2) y s
feus
fj;u LVkW
pZ
(3) Animal starch
(3) t UrqLVkW
pZ
(4) Cyanophycean starch
122. Which plants are called the amphibians of plant
kingdom
(1) Bryophytes
(2) Pteridophytes
(3) Both of above
(4) Algae
(4) lkbuks
Q kbfl;u LVkWp Z
122. d kS
ulsikni t xr~d smHk;pj d gykrsgSA
(1) cz
k;ksQ kbV~l
(2) Vs
fjMksQ kbV~l
(3) mijks
Dr nksuksa
(4) 'kS
oky
123. d kS
ulslaogu fØ IVksxSEl gSA
123. Which are vascular cryptogams
(1) Thallophytes
(2) Algae
(3) Bryophytes
(4) Pteridophytes
124. Replum is present in the ovary of flower of
(1) FkS
y ksQ kbV~l
(2) 'kS
oky
(3) cz
k;ksQ kbV~l
(4) Vs
fjMksQ kbV~l
124. fd ld siq
"i d sv.Mk'k; esajsIy e mifLFkr gksrk gSA
(1) Sunflower
(2) Mustard
(1) lw
;Zeq[kh
(2) ljlks
a
(3) Pea
(4) Lemon
(3) eVj
(4) ua
hacw
125. Formation of fruit without fertilization is
125. fu"ks
p u d sfcuk Q y d k fuekZ.k gSA
(1) Apogamy
(2) Apospory
(1) vi;q
Xeu
(2) vicht k.kq
rk
(3) Syngenesis
(4) Parthenocarpy
(3) fluft us
fll
(4) vfu"ks
d Qyu
RESONANCE
XI-XII ResoMost_STP 32
126. W hich of the following is an important
126. fuEu es
alsd kSulk ,d lHkh izd kj d s'olu esacuus
intermediate formed in all types of respiration
oky k egÙoiw.kZe/;orhZinkFkZgSA
(1) Acetyl Co-A
(1) ,lhfVy Co-A
(2) Oxaloacetate
(3) Pyruvic acid
(4) Tricarboxylic acid
(2) vkDt s
y ks,lhVsV
(3) ik;: fod vEy
(4) Vª
kbd kcksZfDlfy d vEy
127. In mitochondria, protons accumulate in the
(1) Outer membrane
127. ekbVks
d ksfUMª;k esaizksVksu d gk¡bd ësgksrsgSA
(2) Inner membrane
(1) ckgjh f>Yy h es
a
(3) Intermembrane space
(2) Hkhrjh f>YYkh es
a
(4) Matrix
(3) va
rj-f>Yy h vod kf'kd k esa
(4) vk/kk=kh es
a
128. Molls experiment shows
(1) Unequal transpiration from two surfaces of
leaf
(2) Relation between transpiration and
absorption
(3) CO2 is required for photosynthesis
(4) Chlorophyll is essential for photosynthesis
129. Phytol chain is present in
128. eks
y d k iz;ksx iznf'kZr d jrk gS
(1) iÙkh d h nks
uksalrg lsvleku ok"iksRlt Zu
(2) ok"iks
Rlt Zu o vo'kks"k.k d schp laca/k
(3) iz
d k'k la'y s"k.k esaCO2 vko';d gksrh gSA
(4) Dy ks
jksfQ y izd k'k la'y s"k.k d sfy , vko';d gSA
129. Q k;Vks
y Ø e fd lesaik;k t krk gS
(1) Carotenoids
(1) d S
jksVhukWbM~l
(2) haemoglobin
(2) gheks
Xy ksfcu
(3) Chlorophyll
(3) Dy ks
jksfQ y
(4) Phycocyanin
(4) Q k;d ks
l k;fuu
130. Leaves appear green because they reflect
130. ifÙk;kWgjh gks
rh gSD;ksfd ;g light spectrum esagjs
green colour from light spectrum. The part in
jax d ksijkofrZr d jrh gS] ifÙk;ksad k og Hkkx t ks
the leaf that is actually responsible for this
okLro esaijkorZu d sfy , ft EEksnkj gSA
reflection is
(1) gfjr y od d h vkUrfjd f>Yy h
(1) Inner membrane of chloroplast
(2) Thylakoiod space
(3) Thylakoid membrane
(4) Stroma
RESONANCE
(2) Fkk;y s
d kWbM Lisl
(3) Fkk;y s
d kWbM f>Yy h
(4) LVª
ks
ek
XI-XII ResoMost_STP 33
131. Light reaction in stroma lamellae of the
131. gfjry od d h LVª
ksek iVfy d kvksaesagksusoky h izd k'k
chlorplast results in the formaiton of
vfHkfØ ;k d sifj.kkeLo: i D;k curk gSA
(1) NADPH2
(2) ATP + NADPH2
(1) NADPH2
(2) ATP + NADPH2
(3) ATP
(4) O2
(3) ATP
(4) O2
132. Which one of the following hormone is
132. fuEu es
alsd kSulk ,d gkjeksu ikniksaesat h.kZrk d s
responsible for delaying senescence in plants
foy Ecu d sfy , mÙkjnk;h gSA
(1) Auxin
(2) Gibberellins
(1) vkW
fDlu
(2) ft Ccks
fy u
(3) Cytokinins
(4) ABA
(3) lkbVks
d kbfuu
(4) ABA
133. Bacterial pili are involved in
(1) Asexual reproduction
133. cS
DVhfj;y fify fd l lslEcfU/kr gSA
(1) vy S
afxd t uu ls
(2) Sexual reproduction
(2) y S
afxd t uu ls
(3) Saprophytic nutrition
(3) e`
rksit hoh iks"k.k ls
(4) Antibiotic resistance
(4) iz
frt Sfod izfrjks/kd rk ls
134. Which are called club fungi
(1) Ascomycetes
(2) Basidiomycetes
(3) Deuteromycetes
(4) Phycomycetes
135. The maximum growth rate occurs in
(1) Stationary phase
134. d kS
uls'Dy c Q at kbZ' d gykrsgSA
(1) ,Ld ks
ekbflVht
(2) cs
flfM;ksekbflVht
(3) M~
;wVsjksekbflVht
(4) Q kbd ks
ekbflVht
135. vf/kd re o`
f) nj fd lesagksrh gSA
(1) LVs
'kujh voLFkk
(2) lag phase
(2) y s
x voLFkk
(3) Exponential phase
(3) pj?kka
rkd h voLFkk
(4) Senescent phase
(4) flus
l sUV voLFkk
136. Guttation occurs when plants absorb water
through
136. fcUnq
L=kko.k izd V gksrk gSt c ikni t y vo'kksf"kr
d jrsgSA
(1) Active absorption
(1) lfØ ; vo'kks
"k.k ) kjk
(2) Passive absorption
(3) Root pressure
(2) fuf"Ø ; vo'kks
"k.k ) kjk
(4) 1& 2
(3) ew
y nkc ) kjk
(4) 1& 2
137. Water potential is maximum in case of
(1) Pure water
(2) 2% glucose
(3) 10% glucose
(4) 10% NaCl
RESONANCE
137. t y foHko fd lesvf/kd re gks
rk gSSA
(1) 'kq
) ty
(2) 2% Xy w
d kst
(3) 10% Xy w
d kst
(4) 10% NaCl
XI-XII ResoMost_STP 34
138. The function of leghaemoglobin in the root
138. f'kEcka
s(legumes) d hew
y xz
fUFkd kvks
aes
ayS
xgheks
Xyks
fcu
nodules of legumes is :
D;k d k;Zd jrk gSa\
(1) inhibition of nitrogenase activity
(1) ukbVª
ksft ust fØ ;k d k laneu
(2) oxygen removal
(2) vkW
Dlht u d k gVkuk
(3) nodule differentiation
(4) expression of nif gene
(3) xz
afUFkd kvksad k foHksnu
(4) ^^fuQ ^^ t hu d h vfHkO;fDr
139. The cortex of stem is derived from
(1) Dermatogen
(2) Plerome
(3) Periblem
(4) Calyptrogen
140. Cystoliths are composed of
139. LrEHk d k oYd q
V O;qRiUu gksrk gSaA
(1) Ropkt u ls
(2) jEHkt u ls
(3) oYd q
Vt u ls
(4) d s
fy IVªkst u ls
140. flLVks
fy Fk cusgksrsgSA
(1) Calcium oxalate
(1) d s
fYl;e vkWDlsy sV d s
(2) Calcium carbonate
(2) d s
fYl;e d kcksZusV d s
(3) MgCO3
(3) MgCO3
(4) Glucosides
(4) Xy w
d ksl kbM~l d s
141. Casparian thickening occur in cells of which
of the following
141. fuEu es
alsfd ld hd ksf'kd kvksaesad sLisfj;u ifV~Vd k,¡
gksrh gS
(1) Epidermis
(2) Hyopdermis
(3) Endodermis
(4) Pericycle
142. Sugarcane plant has
(1) Reticulate venation
(2) Capsular fruits
(3) Pentamerous flowers
(4) Dumb-bell shaped guard cells
(1) vf/k'peZ
(2) v/k'peZ
(3) vUr'peZ
(4) ifjjEHk
142. xUusd sikni ea
sgksrk gSA
(1) t kfy d kor~f'kjkfoU;kl
(2) lEiq
Vh; Q y
(3) ia
p r;h iq"i
(4) MEcy kd kj xkW
MZd ksf'kd k,¡A
143. Idioblast is
(1) Plant cell different form others
(2) Animal cell different from others
(3) Plant cell having cell inclusions
(4) Animal cell having cell inclusions.
143. bfM;ks
Cy kWLV gS
(1) vU; lsfHkUu ikni d ks
f'kd k
(2) vU; lsfHkUu t Urqd ks
f'kd k
(3) d ks
f'kd k vUrZoLrqv ksa;qDr ikni d ksf'kd k
(4) d ks
f'kd k vUrZoLrqv ksa;qDRk t Urqd ksf'kd k
RESONANCE
XI-XII ResoMost_STP 35
144. In dicot root, vascular cambium originates from
144. f}cht i=kh ew
y esa]laogu ,/kk fd llsmRiUu gksrh gS
(1) Conjunctive tissue
(1) la
;kst hÅ rd
(2) pith rays
(2) eTt k fd j.ks
a
(3) Pericycle
(3) ifjjEHk
(4) 1 & 3 both
(4) 1 & 3 nks
uksa
145. Sap wood differ from heart wood in being
(1) Darker and non conducting
145. jl d k"B fd les
avUr%d k"B lsfHkUu gS
(2) Softer and non conducting
(1) xgjh rFkk vla
oguh
(3) Lighter and conducting
(2) d ks
ey rFkk vlaoguh
(4) Hard, darker and less conducting
(3) gYd h rFkk la
oguh
(4) d Bks
j]xgjh rFkk d e laoguh
146. Complementary cells are associated with
(1) Lenticels
(2) Hydathodes
(3) Rhytidome
(4) Bark
147. In Whittaker's classification, which kingdom is
146. iw
jd d ksf'kd k,¡ (complementary cells) fd l l s
lEcfU/kr gS
(1) okrjU/kz
(2) t y jU/kz
(3) jkbfVMks
e
(4) Nky
main producer ?
(1) Monera
(2) Protista
(3) Plantae
(4) Mycota
148. Phylogenetic system of classification is based
on
147. fOgVS
d j d soxhZ
d j.kes
ad kS
ulkt xr~eq
[; mRiknd gS
A
(1) eks
usjk
(2) iz
ksfVLVk
(3) Iy kW
.Vh
(4) ekbd ks
Vk
148. oxhZ
d j.k d h t kfro`Ùkh; i) fr fd l ij vk/kkfjr gSA
(1) Floral Characters
(1) iq
"ih; y {k.kksaij
(2) Evolutionary relationships
(3) Morphological features
(4) Chemical constituents
(2) mn~
fod klh; lEcU/kksaij
(3) vkd kfjd h; y {k.kks
aij
(4) jklk;fud ?kVd ks
aij
149. A nonlegume, symbiotic nitrogen fIxing
bacterium is
fLFkjhd kjh cSDVhfj;k gSA
(1) Rhizobium
(2) Azotobacter
(3) Frankia
(4) Clostridium.
150. Which is called as living fossil
(1) Ginkgo
(2) Cycas
(3) Metasequoia
(4) All the above
RESONANCE
149. ,d vf'kEch; (Non legume), lgt hoh ukbVª
kst u
(1) jkbt ks
fc;e
(2) ,t ks
VkscS
DVj
(3) Ý S
fUd ;k
(4) Dy kW
LVªhfM;e
150. fd lst hfor t hok'e (Living fossil) d grsgS
A
(1) ft Uxks
(2) lkbd l
(3) es
Vkfld ks;k
(4) mijks
Dr lHkh
XI-XII ResoMost_STP 36
151. Volume of air remaining in lungs after maximal
151. ps
"Vk }kjk vf/kd re mPN~okl d smijkUr Q q¶Q lksaesa
expiratory effort is :
'ks"k ok;qd ksd gk t krk gS&
(1) Vital capacity (2) Total lung capacity
(1) t S
fod {kerk
(2) iw
.kZQ q
¶Q ql h; {kerk
(3) Tojh; vk;ru
(4) vo'ks
"kh vk;ru
(3) Tidal volume (4) Residual volume
152. By the mechanical stimulation on the wall of
152. vkek'k; d h nhokj ij ;kfU=kd míhIru ls,d gkW
eksZu
stomach, a hormone is released. This is
fud y rkgS
(1) Gastrin
(2) Progesterone
(1) xS
fLVª
u
(2) iz
kst sLVhjkWu
(3) Secretin
(4) Pancreozymin
(3) fld z
sfVu
(4) is
afd z;kst kbfeu
153. Enterokinase is in
153. ,UVhjks
d kbust ik;k t krk gS&
(1) Bile juice
(1) fiÙk jl es
a
(2) Intestinal juice
(2) vk¡
=kh; jl eas
(3) Pancreatic juice
(3) vXU;k'k;h jl es
a
(4) Pancreatic hormone
(4) vXU;k'k;h gkW
eksZu esa
154. Number of RBCs per unit volume of blood is
154. lkekU;r;kÅ a
p hrqa
xrk¼Å apkbZ½ij jgusokysO;fDr;ksa
likely to be higher in a person living at high
esasRBCs d hla[;kizfr bZd kbZvk;ru vf/kd gksrhgS
altitudes, because :
D;ks
afd &
(1) air clean and unpolluted
(2) more sunshine is available
(1) ok;q'kq
) rFkk iznw"k.k jfgr gksrh gS
(2) vR;f/kd lw
;Zizd k'k miy C/k gksrk gS
(3) air is less dense
(4) vegetation gives out more O2
(3) ok;ql?kurk vYi gks
rh gS
(4) ouLifr vR;f/kd O2 iz
nku d jrh gS
155. The nephrostomes, in the kidneys, are
functional in
(1) Rabbit
(2) Adult frog
(3) Tadpole
(4) Cockroach
155. fd ld so`
Dd ksaesausÝ ksLVksEl fØ ;k'khy jgrsgSa
(1) [kjxks
'k d s
(2) o;Ld es
a<+d d s
(3) Vs
Miksy d s
(4) d kW
d jksp d s
156. us
Ý ksl d h ufy d kvksaesaiqu% vo'kks"k.k fd l çfØ ;k
156. Reabsorption in the tubules of nephrons
occurs by the process of
(1) Osmosis
(2) Diffusion
(3) Filtration
(4) Active transport
RESONANCE
}kjk gksrk gS
(1) ijklj.k
(2) folj.k
(3) fuL;a
nu
(4) lfØ ; ifjogu
XI-XII ResoMost_STP 37
157. The RBC at higher altitude will
(1) Increase in size
157. Å¡ps LFkkuksa ij tkus ij RBC ds
(1) vkdkj esa o`f) gksxh
(2) Decrease in size
(2) vkdkj esa deh gksxh
(3) Increase in number
(3) la[;k esa o`f) gksxh
(4) Decrease in number
(4) la[;k esa deh gksxh
158. Hardening of the arteries due to deposition of
158. dksyfs LVjkWy ds teus ds dkj.k /kefu;ksa dk dM+k gksuk D;k
cholesterol is called
dgykrk gS \
(1) Thrombosis
(2) Atherosclerosis
(3) Rhinitis
(4) Stenosis
(1) FkzkEs cksfll
(2) ,FksjksLDysjksfll
(3) jkbukbfVl
(4) LVsuksfll
159. In an accident there is great loss of blood
159. ,d nq
?kVZukes
a: f/kj d hcgq
r gkfu gq
bZgS
]vkjS : f/kj lew
g
and there is no time to analyse the blood
d h t kpa d sfy, le; ugh gSrksd kuSlk : f/kj lew
g
group
Which blood can be safely transferred?
(1) 0 and Rh negative
lq
j{kkRed : i lsbl O;fDr d ksp<+
k;kt kld rkgS
A
(1) 0 rFkkRh fuxs
fVo
(2) 0 and Rh positive
(2) 0 rFkkRh ikf
st fVo
(3) AB and Rh negative
(3) AB rFkkRh fuxs
fVo
(4) AB and Rh positive
(4) AB rFkk Rh ikf
st fVo
160. Which of the following statements are wrong?
(i) Leucocytes disintegrate in the spleen and
liver
160. d ku
Slkd Fku lghughagS\
(i) Iyhgk o ;Ñ r es
aY;w
d kls kbV~
l d kfo?kVu gkrskgS
A
(ii) RBC, WBC rFkk: f/kj Iys
Vys
Vl~ LkHkhvfLFkeTt k
(ii) RBC, WBC and blood platelets are
produced by bone marrow.
(iii) Neutrophils bring about destruction and
detoxification of toxins of protein origin.
(iv) The important function of lymphocytes is
to produce antibodies.
es
acursgS
Aa
(iii) U;w
VkªfsQ Yl iz
kVshu mRifÙk d sfo"kkasd h fo"kkDrrk d ks
Uk"V d jrkgS
Aa
(iv) fyEQkl
s kbV~
l d k egRoiw
.kZd k;Ziz
frj{kh d k;kasd k
mRiUu d jukgS
Aa
(1) (i) and (ii) only
(2) (i) and (iv) only
(1) d o
sy (i) rFkk(ii)
(2) d o
sy (i) rFkk(iv)
(3) (i) and (iii) only
(4) (ii) and (iii) only
(3) d o
sy (i) rFkk(iii)
(4) d o
sy (ii) rFkk(iii)
161. Which is a cold blooded animal?
161. d ks
YM Cy MsM t Urqd kSu gS&
(1) Pigeon
(2) Shark
(1) d cw
rj
(2) 'kkd Z
(3) Kangaroo
(4) Rabbit
(3) d a
xk:
(4) [kjxks
'k
RESONANCE
XI-XII ResoMost_STP 38
162. Frog is
162. es
a<+d gS&
(1) Aminotelic
(2) Ammonotelic
(1) vehuks
Vs
fy d
(2) veks
uksVsfy d
(3) Ureotelic
(4) Uricotelic
(3) ;w
fj;ksVsfy d
(4) ;w
fjd ksVsfy d
163. Chief functions of the rods and cones in the
eye of a vertebrate are
163. d’ks#dksa ds us= esa jkWM~l rFkk dksUl dk çeq[k dk;Z gS
(1) jkWM~l rhoz çdk'k esa rFkk dksUl eUn çdk'k esa n`f"V
(1) Rods are important for vision in bright light
ds fy;s mRrjnk;h gSa
and cones in dim light
(2) jkWM~l eUn çdk'k esa rFkk dksUl rhoz çdk'k esa n`f"V
(2) Rods are important for vision in dim light
and cones in bright light
(3) Rods are involved in colour vision and cones
in distinguishing intensities of light
(4) Rods and cones are both important for
ds fy;s mRrjnk;h gSa
(3) jkW
M~l rhozjaxhu n`f"V lsrFkk d ksUl i`Fkd &i`Fkd
rhozrk d sçd k'k easn`f"V lslEcfU/kr gSa
(4) jkW
M~
l rFkkd ks
Ul eUn çd k'kes
an`
f"V lslEcfU/kr gS
a
vision in dim light
164. Identify the protein which does not contain any
metal(1) Phytochrome
(2) Cytochrome
(3) Glycoprotein
(4) Ferritin
165. Lipids are insoluble in water, because lipids
molecules are
(1) Neutral
(2) Zwitter ions
(3) Hydrophobic
(4) Hydrophilic
166. Which set clearly identify striated muscles
164. /kkrqjfgr çks
Vhu d ksigpkfu;s&
(1) Q kbVks
Ø kse
(2) lkbVks
Ø kse
(3) Xy kbd ks
izksVhUk
(4) Q s
jhfVu
165. fyfiM~
l t y es
avfoys
; gkrssgS
aD;kfasd mud sv.kqgkrssgS
Aa
(1) mnklhu
(2) fToVj vkW
;u
(3) gkbMª
ksQ ksfcd
(4) gkbMª
ksfQ fy d
166. fuEu esa ls dkSulk tksM+k jsf[kr isf'k;ksa dk gS
(1) Cylindrical, syncytial and unbranched
(1) csyukdkj] flUlkbfV;y ,oa v'kkf[kr
(2) Spindle, unbranched and uninucleated
(2) rdqZ:ih] v'kkf[kr ,oa ,ddsfUnzdh;
(3) Cylindrical, striped and nucleated
(4) Cylindrical, striped and branched
(3) csyukdkj] /kkjhnkj ,oa dsfUnzdh;
(4) csyukdkj] /kkjhnkj ,oa 'kkf[kr
167. Basement membrane is made up of
(1) epidermal cells only
(2) endodermal cells only
167. vk/kkjh; f>Yy h fd llscuh gks
rh gS
(1) d s
oy mipehZd ksf'kd kvksad k
(3) Both (1) and (2)
(2) d s
oy vUr'pehZ; d ksf'kd kvksad k
(4) no cell at all, but is a product of epithelial cells
(3) (1) rFkk (2) nks
uksa
(4) bles
afd lhizd kj d hd ksf'kd kughagksrhijUrq;g
mid y k d ksf'kd kvksad k mRikn gS
RESONANCE
XI-XII ResoMost_STP 39
168. Sexual dimorphism is found in
168. fd les
ay Sfxad f}: irk ikbZt krh gS\
(1) Hydra
(2) Ascaris
(1) gkbMª
k
(2) ,s
Ld sfjl
(3) Fasciola
(4) Earthworm
(3) Q s
f'k;ksy k
(4) d s
ap qv k
169. Distinct microvilli are present on all of the
169. fuEu es
alsfd l d ksNkMs+
d j lHkhij Li"V ekbd z
ks
foykbZ
following except
mifLFkr jgrsgS
(1) Cells lining the proximal convoluted tubules
(1) fd Muh d h iz
ksfDley d kWUoksY;wVsM ufy d kvksad s
of the kidney
d ksf'kd h; vkLrj d ks
(2) Follicular cells of the thyroid gland
(2) Fkk;jkW
bM xzafFk d sQ Wkfy d qy j d ksf'kd kvksad ks
(3) Absorptive cells of the intestinal epithelium
(3) vk¡
r d h mid y k d h vo'kks"k.k d ksf'kd kvksad ks
(4) Mucous cells of th salivary glands
(4) y kj xz
afFk d h 'y s"eh d ksf'kd kvksad ks
170.
Which one of the following four secretions is correctly matched with its source, target and nature
of action
Secretion
Source
Target
Action
(1) Gastrin
Stomach lining
Oxyntic cells
Production of HCl
(2) Inhibin
Sertoli cells
Hypothalamus
Inhibition of secretion
gonadotropin releasing
hormone
(3) Enterokinase
Duodenum
Gall bladder
Release of bile juice
(4) Atrial
Sinu atrial
Juxta-
Inhibition of release of
renin
Natriuretic Factor (ANF) node (SAN) M-cells
of Atria
glomerular
apparatus
(JGA)
fuEufy f[kr pkj ò koksaesalsfd l ,d d ksmld sò ksr]y {; ,oafØ ;k lslgh fey k;k x;k gS&
ò ko
ò ksr
y {;
fØ ;k
(1) xSfLVªu
t Bj d k Hkhrjh vLrj vEyt u
HCl d kmRiknu
d ksf'kd k;sa
(2) bufgfcu
lVksZy h d ksf'kd k;sa
gkbiksFkSy sel
(3) ,aVsjksd kbust
xzg.kh
fiÙkk'k;
(4) ,fVª;y uSfVª;wjsfVd
d kjd (ANF)
f'kjk vkfy Un ioZ(SAN) xqPNklu
,fVª;k d h M d ksf'kd k;sa mid j.k
xksuSMksVªksfiu fjy hft ax gkeksZu d s
ò ko.k d k laneu
fiÙk jl d k eksp u
jsfuu d seksp u d klaneu
171. d .kZiYy o fd les
aik;st krsgSa&
171. Ear pinna is found in
(1) Reptiles
(2) Mammals
(1) ljhl`
iksaesa
(2) Lrfu;ks
aesa
(3) Aves
(4) All vertebrates
(3) if{k;ks
aesa
(4) lHkh d 'ks
:dh
RESONANCE
XI-XII ResoMost_STP 40
172. The sound producing organ of bird is
172. i{kh d k /ofu mRié d jusoky k va
x gS&
(1) larynx
(2) syrinx
(1) d a
B (larynx)
(2) lhfja
Dl
(3) glottis
(4) oropharynx
(3) d a
B }kjk
(4) vks
jksQ SfjaDl
173. In mammalian ear, a membranous structure
173. Lru/kkfj;ka
sd sd ku es
aLd yS kos
LVhcq
y kbZd ksLd yS kehfM;k
which separate the scala vestibuli and scala
lsi`
Fkd d jusokyhf>Yyhuq
ekjpukgS
media is
(1) Basilar membrane
(1) cs
l hyj f>Yyh
(2) Reissner’s membrane
(2) jhlulZf>Yyh
(3) Autolith membrane
(3) vkV
WkfsyfFkd f>Yyh
(4) Tectorial membrane
(4) Vs
DVkfsj;y f>Yyh
174. In the diagram of multipolar myelinated neuron
174. uhps fn;s x;s cgq/kzo
q h; ek;fyusVM
s U;wjkWu ds fp=k esa U;wjkWu
given below, different parts have been indicated
ds fofHkUu Hkkxksa dks vaxt
sz h o.kZekyk ds v{kjksa }kjk bafxr
by alphabetes; choose the answers in which
C
these alphabetes have been correctly matched
fd;k x;k gS] uhps fn;s x;s dkSu ls fodYi esa fp=k esa fn;s
with the parts which they indicate
x;s LFkkuksa dk v{kjksa ls lgh lEcU/k crk;k x;k gS
C
F
D
E
B
G
A
F
D
E
B
G
A
(1) A = Cell body, B = Nissl bodies, C = Nucleus,
(1) A = dksf'kdk dk;, B = fuflYl ckWMht, C =
D = Dendrites, E = Naked portion of axon,
dsUnzd, D = MsUMªkbV, E = ,sDlkWu dk uXu Hkkx,
F = Myelin sheath, G = Node of Ranvier
F = ek;fyuirZ, G = jsufo;j dh uksM
(2) A = Cell body, B = Nissl bodies, C = Naked
portion of axon, D = Dendrites, E =
Nucleus, F = Myelin sheath, G = Node of
Ranvier
(2) A= dksf'kdk dk;, B = fuflYl ckWMht, C = ,sDlkWu
dk uXu Hkkx, D = MsUMªkbV~l, E = dsUnzd, F =
ek;fyu irZ, G = jsufo;j dh uksM
(3) A = Cell body, B = Nissl bodies, C = Naked
(3) A = dksf'kdk dk;, B = fuflYl ckWMht, C =
portion of axon, D = Nucleus, E =
,sDlkWu dk uXu Hkkx, D = dsUnzd, E = MsUMªkbV~l,
Dendrites, F = Myelin sheath, G = Node of
F = ek;fyu irZ, G = jsufo;j dh uksM
Ranvier
(4) A = Cell body, B = Nissl bodies, C = Dendrites,
D = Nucleus, E = Naked portion of axon, F
= Myelin sheath, G = Node of Ranvier
RESONANCE
(4) A = dksf'kdk dk;, B = fuflYl ckWMht, C =
MsUMªkbV~l, D = dsUnzd, E = ,sDlkWu dk uXu
Hkkx, F = ek;fyu irZ, G = jsufo;j dh uksM
XI-XII ResoMost_STP 41
175. When a neuron is stimulated to generate nerve
impulse, the electrical potential on the inside
175. tc U;wjkWu raf=kdk vkosx mRié djus gsrq mn~nhfir
gksrk gS] rks raf=k dk ls f>Yyh ds vUnj dh lrg dk
of the nerve membrane changes
oS|qr foHko ifjofrZr gksrk gS
(1) From negative to positive and remains
positive
(2) From negative to positive and back to
(1) _.kkRed ls /kukRed ,oa /kukRed gh jgrk gS
(2) _.kkRed ls /kukRed ,oa iqu% _.kkRed gks tkrk gS
(3) /kukRed ls _.kkRed ,oa _.kkRed gh jgrk gS
negative
(3) From positive to negative and remains
(4) /kukRed ls _.kkRed ,oa iqu% /kukRed gks tkrk gS
negative
(4) From positive to negative and back to
positive
176. An example of synovial joint is found between
176. lkbuksfo;y laf/k dk ,d mnkgj.k og gS tks
(1) Two vertebrae
(1) nks d'ks:dksa ds chp ik;k tkrk gS
(2) Two skull bones
(2) nks djksfV vfLFk;ks ds chp ik;k tkrk gS
(3) Humerus and ulna
(3) áwejl vkSj vYuk ds chp ik;k tkrk gS
(4) Tail vertebrae
(4) iw¡N dh d'ks:dksa ds chp ik;k tkrk gS
177. An endocrine gland known as 'gland of
emergency' is :
(1) pituitary
(2) parathyroid
(3) adrenal
(4) pancreas
178. Uricotelism is found in :
177. ^vkikr d ky xz
fUFk d suke lst kuh t krh gS%
(1) fiV~
;wVjhxzfUFk
(2) iS
jkFkk;jkWbM xzfUFk
(3) ,Mª
huy xzfUFk
(4) vXU;k'k;
178. ;w
fjd ksVsfy Te fd lesaikbZt krh gS\
(1) Birds , reptiles and insects
(1) i{kh] lfjl`
i]o d hVksesa
(2) Frogs and toads
(2) es
a<+d o VSMiksy esa
(3) Mammals and birds
(3) Lruh o i{kh
(4) Fishes and fresh water protozoans
(4) eNfy ;ks
arFkk LoPN t y h; izksVkst ksv k
179. The special contractile protein actin is found
179. fof'k"V ladqpu'khy çksVhu ,fDVu dgk¡ ik;k tkrk gS
in
(1) Thick filaments of A–bands
(2) Thin filaments of I–bands
(1) A–iV~Vh ds eksVs rUrq esa
(2) I–iV~Vh ds eghu rUrq esa
(3) Both thick and thin bands
(3) nksuksa eksVh rFkk iryh ifV~V;ksa esa
(4) Whole of myofibril
(4) iw.kZ ek;ksQkbfczy esa
RESONANCE
XI-XII ResoMost_STP 42
180. Which one of the following takes place in a
myofibril when skeletal muscle contract
Light band
Dark band
180. fuEu esa ls dkSulh ,d fØ;k ek;ksQkbfczy esa gksrh gS
tc dadkyh; isf'k;k¡ ladqpu djrh gS
H–zone
(1) Shortens
Shortens
Shortens
(2) Shortens
Unchanged
Unchanged
(3) Shortens
Unchanged
Disappears
(4) Unchanged
Shortens
Shortens
gYds cS.M
xgjs cS.M
H–tksu
(1) NksVs gksrs gSa
NksVs gksrs gSa
NksVs gksrs gSa
(2) NksVs gksrs gSa
vifjofrZr jgrs gSa vifjofrZr
jgrs gSa
(3) NksVs gksrs gSa
181. Hormones
involved
in
vifjofrZr jgrs gSa
foyqIr gks
carbohydrate
tkrs gSa
metabolism are
(1) Insulin, glucagon, epinephrine and
parathormone
(4) vifjofrZr jgrs gSa NksVs gksrs gSa
NksVs gksrs gSa
181. gkeks
Zu t ksd kcksZgkbMªsV mikip; lslacaf/kr gksrsgSA
(2) Insulin, glucagon, epinephrine and
glucocorticoids
(3) Insulin, glucagon, glucocorticoid and
(1) bLlq
fy u]Xy wd kxksu],ihusÝ hu o iSjkFkkjeksu
(2) bUlq
fy u]Xy wd kxksu],ihusfÝ u o Xy d ksfVZd kbM
(3) bUlq
fyu]Xyw
d kxkus]Xyw
d ks
d kfVZ
d kbM o d fsYlVkfsuu
calcitonin
(4) Insulin, glucagon, norepinephrine and
melatonin
(4) bUlq
fy u]Xy wd kxksu]uksj ,fiuÝ hu o fey sVksfuu
182. ,d gkeks
Zu, mld sL=kksr rFkk d k;Zd ksfuEufy f[kr ls
182. Select the correct matching of a hormone, its
fd l ,d esalgh fey k;k x;k gSA
source and function
gkeks
Zu
Hormone
(1) Prolactin
Source
Function
Posterior pituitary Regulates growth
of mammary glands
and milk formation
in females
Increases loss of
(2) Vasopressin
Posterior pituitary
water through urine
(3) Norepinephrine Adrenal medulla Increases heart beat,
rate of respiration
and alertness
(4) Glucagon
Stimulates
Beta-cells of lslets
glycogenolysis
of langerhans
183. Cranium of man is made up of
d k;Z
eknkvksaeasLruxzafFk;ksa
d h o`f) rFkk nw/k
(2) oS
l ksizsfl u
Ik'p fiV~;qVjh
ew=k }kjk t y d h
gkfu d ksc<+krk gS
(3) uks
ân; Lianu] 'ol u
j,fiusÝ hu ,s
M ªhuy es
M qYkk
nj rFkk l rd Zrk
d ksc<+krk gS
(4) Xy w
d SxkWu
yS
axjgSl }hfid kvks
a Xy kbd ksft uksy kbfll
ft r d juk
d h chVk d ksf'kd k,a d ksmÙks
(1) iz
ksy SfDVu
L=kksr
Ik'p fiV~;qVjh
183. euq"; dh Øsfu;e cuh gksrh gS
(1) 8 bones
(2) 12 bones
(1) 8 vfLFk;ksa dh
(2) 12 vfLFk;ksa dh
(3) 10 bones
(4) 16 bones
(3) 10 vfLFk;ksa dh
(4) 16 vfLFk;ksa dh
184. Which of the following takes part in salt
184. fuEu es
alsd kSulkgkeksZ
u y o.k&la
rqy u esaHkkx y srkgS
balancing ?
(1) Mineralocorticoid
(2) Glucocorticoid
(1) feujs
y ksd kfVZd kbM
(2) Xy w
d ksd kfVZd kbM
(3) Somatotrophin
(4) None
(3) lks
esVksVªks
fiu
(4) d ks
bZugh
RESONANCE
XI-XII ResoMost_STP 43
185. Which of the following forms the covering of
the central nervous system of man
(1) Duramater and piamater
(2) Duramater and arachnoid membrane
(3) Arachnoid membrane and piamater
(4) Duramater, arachnoid mater and piamater
185. euq"; esa fuEu esa ls dkSu dsUæh; raf=dk ra= dk vkoj.k
cukrk gS
(1) M~;wjkesVj rFkk ik;kesVj
(2) M~;wjkesVj rFkk vjsDukWbM f>Yyh
(3) vjsDukWbM f>Yyh rFkk ik;kesVj
(4) M~;wjkesVj vjsDukWbM f>Yyh rFkk ik;kesVj
186. A poisonous lizard is
186. ,d fo"kS
y h fNid y h gS&
(1) Varanus
(1) os
jsul
(2) Chameleon
(2) d S
es
fyvu
(3) Ancistrodon
(3) ,fUlLVª
ks
MkWu
(4) Heloderma
(4) gs
y ksMekZ
187. Special mode of feeding by radula is found in
187. js
Mw
y kd s}kjkHkkst u x`g.kd jusd krjhd kfd les
aik;k
(1) Sea mouse
t krk gS\
(2) Earthworm
(1) lew
nzhpwgk
(3) Molluscs
(2) d s
ap qv k
(4) Sea snake
(3) eks
y Ld
(4) lew
nzhliZ
188. Echinoderms are
(1) Freshwater forms
(2) Exclusivelymarine
(3) Both freshwater and marine
(4) None of the above
188. bZ
d kbuksMZEl gksrsagSa&
(1) LoPN t y h;
(2) iw
.kZ: i lsleqnzh
(3) LoPN t y h; o leq
nzh nksuksa
(4) mijks
Dr esalsd ksbZugha
189. Stratified squamous epithelium is found in
189. LVªsVhQkbM LDosel ,ihFkhfy;e Ård fdlesa ik;k
(1) Trachea
tkrk gS
(2) Epidermis
(1) VªSfd;k
(3) Mouth cavity (buccal)
(2) ,ihMfeZl
(4) Lining of blood vessels
(3) eq[kxqgk
(4) jä okfgdkvksa dk vkLrj
RESONANCE
XI-XII ResoMost_STP 44
190. Cellulose, the most important constituent of
plant cell wall is made of
(1) Unbranched chain of glucose molecules
linked by  1, 4 glycosidic bond
(2) Branched chain of glucose molecules linked
by  1, 4 glycosidic bond in straight chain
and  1, 6 glycosidic bond at the site of
branching
(3) Unbranched chain of
glucose molecules linked by  1, 4
glycosidic bond
(4) Branched chain of glucose molecules linked
by  1, 6 glycosidic bond at the site of
branching
cuk gksrk gSA
(1) Xy q
d kst v.kqd h v'kkf[kr Ük`a[ky k t ksfd
 1, 4
Xy kbd ksl kbfMd ca/k }kjk t qMh gksrh gSA
(2) Xy q
d ksl v.kqd h 'kkf[kr Ük`a[ky k  1, 4
Xy kbd ksl kbfMd ca/k }kjk lh/kh Ük`a[ky k esarFkk
 1, 6 Xy kbd ks
l kbfMd ca/k }kjk 'kk[ku d k
t xg ij
(3) Xy q
d kst v.kqd h v'kkf[kr Ük`a[ky k t ksfd
 1, 4
Xy kbd ksl kbfMd ca/k }kjk t qMh gksrh gSA
(4) Xy q
d kst v .kq d h 'kkf[kr Ük`a[ky k  1, 6Xy kbd ksl kbfMd ca/k }kjk 'kk[ku d h t xg ij
191. Find out the correct match
Column - I
Column - II
(A) Hepatic lobule
(p) Sub mucosal
glands
(B) Brunner's glands
(q) Base of villi
(C) Crypts of Lieberkuhn (r) Glisson's
(D) Sphincter of Oddi
(E) Cystic duct
190. lS
y qy kst , d ksf'kd kfHkfÙk d kegRoiw.kZ?kVd gS]t ksfd
191. lgh t ks
M+scukb;s
d kWy e - I
(A) fgiS
fVd y kC;qYl
d kW
y e - II
(p) mi&E;w
d l xzfUFk;k¡
(B) cz
wulZxzfUFk;k¡
(q) foy kbZd k vkèkkj
(C) fd z
¶V vkWQ fy cjd qgu (r) fXy lu d SiL;wy
capsule
(D) fLQ a
Vj vkWQ vksMkbZ
(s) fiÙkk'k;
(s) Gallbladder
(E) flfLVd ufy d k,¡
(t) fgiS
VkisfSUd ;zfsVd MDV
(t) Hepato pancreatic duct
(u) Serous glands
(u) lhjl xz
fUFk;k¡
(2) A-t , B-q , C-s , D-u , E-p
(1) A-r , B-u , C-q , D-t , E-s
(2) A-t , B-q , C-s , D-u , E-p
(3) A-r , B-p, C-q , D-t , E-s
(3) A-r , B-p, C-q , D-t , E-s
(4) A-s , B-u , C-t , D-q , E-p
(1) A-r , B-u , C-q , D-t , E-s
(4) A-s , B-u , C-t , D-q , E-p
192. lka
l y susd slanHkZesa;fn t ku&cw> d j ç;kl fd ;k
192. Which one of the following is a possibility for
t k;srksge esalsvf/kd rj d sfy , fuEufy f[kr esals
most of us in regard to breathing, by making a
fd l ,d d sgksusd h laHkkouk gksld rh gS\
(1) d ks
bZpkgsrksiwjh rjg vkWDlht u&jfgr ok;qd ks
conscious effort?
(1) One can breathe out air totally without
oxygen
(2) One can breathe out air through eustachian
tubes by closing both the nose and the
mouth
lkal d sckgj fud ky ld rk gSA
(2) ukd vkS
j eq¡
g nksuks
ad ksiwjhrjg ca
n d jd slka
l dh
ok;qd ks;wLVsf'k;u ufy ;ksa}kjkckgj d ksNks
M+
kt k
ld rk gSA
(3) One can consiously breathe in and breathe
(3) d ks
bZpkgsrkst ku&cw> d j ilfy ;ksad kst jk Hkh
out by moving the diaphragm alone,
py k;sfcukd soy Mk;Ý ke ¼e/;iV½ d kspy kd j]
without moving the ribs at all
lkal d ksHkhrj [khap ld rk gSvkSj ckgj fud ky
ld rk gSA
(4) The lungs can be made fully empty by
forcefully breathing out all air from them
(4) cy iw
oZd lkal d ksckgj NksM+rsgq, Q sQ M+ksad ksiwjh
rjg gok ls[kky h d j fn;k t k ld rk gSA
RESONANCE
XI-XII ResoMost_STP 45
193. Collagen is
193. d ks
y st u gSA
(1) Fibrous protein
(2) Globular protein
(1) js
'ksnkj izksVhUk
(2) xks
fy d ke; izksVhu
(3) Lipid
(4) Carbohydrate
(3) fy fiM
(4) d kcks
ZgkbMZªV
194. Covering of the lungs is called :
194. Q q
¶Q ql h; vkoj.k d ksd grsgS&
(1) Perichondrium
(2)Pleural membrane
(1) is
fjd kWfUMZ;e
(3) Pericardium
(2) Iy w
jy d y k
(4) Peritoneum
(3) is
fjd kfMZ;e
195. Which among the following is the strongest
cartilage
(4) is
fjVksfu;e
195.fuEufyf[kr esa dkSu lh lcls etcwr mikfLFk gS
(1) Hyaline cartilage
(1) gk;ykbu mikfLFk
(2) Elastic cartilage
(2) bykfLVd mikfLFk
(3) White fibro cartilage
(3) OgkbV Qkbczks mikfLFk
(4) Violet fibro cartilage
(4) ok;ysV (Violet) Qkbczks mikfLFk
196. Cartilaginous fishes do not have
(1) Operculum
(2) Scales
(3) Gill slits
(4) Pelvic fins
196. mikLFkh; eNfy ;ks
aesaughaik;k t krk gS&
(1) vks
ijd qy e
(2) 'kYd
(3) fxy njkjs
a
(4) Js
f.kehu ia[k
197. Spermathecae in earthworm is
(1) for producing sperm
197. d s
ap q,sesaLijesfFkd k d k d k;ZgS\
(2) for storages of sperm obtained from male
earthworm during copulation and used in
future
(1) 'kq
Ø k.kqmRiUu d jukA
(2) uj d s
ap q,slsizkIr 'kqØ k.kqv ksad ks]Hkfo"; d smi;ksx
d sfy ;slaxzfgr d juk
(3) both (1) and (2)
(3) (1) o (2) nks
uksa
(4) none of these
(4) d ks
bZugha
198. The following are the features associated with
198. fuEu y {k.k fuMs
fj;k lslacaf/kr gSa&
Cnidaria
I. Radial symmetry
I. vjh; leferh
Il. Presence of gastrovascular cavity
II. xS
LVªksosLd qy j xqgkd hmifLFkfr
III. Animals are in either of the two forms-polyp
and medusa or both
IV. Alternation of generations in their history
Which of the above are true of Metridium?
III. t a
rqv ksad snks: i & ikWfy i vkSj esMwl k;k nksukas
IV. ihf<+
;ksad k ,d karj.k]t hou bfrgkl esa
fuEu esalsd kSu lk esVªhfM;e d sfy , lR; gS
(1) all
(2) only I and II
(1) lHkh
(2) d s
oy I o II
(3) only II and III
(4) only I, II and IV
(3) d s
oy II o III
(4) d s
oy I, II o IV
RESONANCE
XI-XII ResoMost_STP 46
199. Water reabsorption in the distal parts of kidney
199. o`
Dd d hnwjLFkò kohufy d kesat y d kiqu%vo'kks"k.k
tubules is regulated by
fu;fU=kr fd ;k t krk gS
(1) STH
(1) lks
esVksVªksfQ d (STH) gkWeksZu }kjk
(2) TSH
(3) ADH
(4) MSH
(2) Fkk;jkW
bM mn~nhiu (STH) gkWeksZu }kjk
(3) ,UVhMk;w
jsfVd gkWeksZu (ADH) }kjk
(4) es
y suksQ ksj LVheqy sfVax gkWeksZu (MSH) }kjk
200. Characters of which group are present in all
200. fd l oxZd slnL;ks
ad sy {k.klHkhd 'ks: fd ;ksaesad qN
chordates in some stage or the other of their
voLFkkvksaesa;knwl jksesamud st hou pØ esamifLFkr
life cycle?
gksrsgSa&
(1) Gill clefts, vertebral column and notochord
(1) fxYl njkjs
a] d 'ks: d LrEHk vkSj ukWVksd kMZ(Gill
(2) Mammary glands, hairs and gill clefts
(3) Notochord, scales and dorsal tubular
nervous system
(4) Notochord, gill clefts and dorsal tubular
central nervous system
clefts, vertebral column and notochord)
(2) Lru xz
fUFk;k¡] cky vkSj fxYl njkjsa(Mammary
glands, hairs and gill clefts)
(3) ukW
Vksd kMZ] 'kYd vkSj i`"Bh; ufy d kd kj rfU=kd k
rU=k
(4) ukW
Vksd kMZ] fxYl njkjsa vkSj i`"Bh; ufy d kd kj
d sUnzd h; rfU=kd k rU=k
RESONANCE
XI-XII ResoMost_STP 47
ANSWER KEY
(PART–A : CHEMISTRY)
Q.No.
1
2
3
4
5
6
7
8
9
10
Ans.
4
1
4
3
1
1
4
2
2
1
Q. No.
11
12
13
14
15
16
17
18
19
20
Ans.
2
4
2
1
2
3
3
3
1
3
Q. No.
21
22
23
24
25
26
27
28
29
30
Ans.
2
4
4
2
3
2
2
1
4
3
Q. No.
31
32
33
34
35
36
37
38
39
40
Ans.
4
2
1
3
1
4
1
4
3
3
Q. No.
41
42
43
44
45
46
47
48
49
50
Ans.
1
3
3
4
1
3
4
1
4
1
(PART–B : PHYSICS)
Q.No.
51
52
53
54
55
56
57
58
59
60
Ans.
4
1
2
1
3
3
3
1
4
4
Q. No.
61
62
63
64
65
66
67
68
69
70
Ans.
1
2
2
4
3
2
2
1
2
2
Q. No.
71
72
73
74
75
76
77
78
79
80
Ans.
4
2
3
1
4
4
2
3
1
3
Q. No.
81
82
83
84
85
86
87
88
89
90
Ans.
3
2
4
1
2
3
4
2
1
2
Q. No.
91
92
93
94
95
96
97
98
99
100
Ans.
1
4
1
2
2
1
4
2
3
4
(PART–C : BIOLOGY)
Q.No.
101
102
103
104
105
106
107
108
109
110
Ans.
4
3
3
1
2
1
3
4
3
4
Q. No.
111
112
113
114
115
116
117
118
119
120
Ans.
2
3
4
3
3
4
3
3
3
2
Q. No.
121
122
123
124
125
126
127
128
129
130
Ans.
1
1
4
2
4
3
3
3
3
3
Q. No.
131
132
133
134
135
136
137
138
139
140
Ans.
3
3
2
2
3
3
1
2
3
2
Q. No.
141
142
143
144
145
146
147
148
149
150
Ans.
3
4
3
4
3
1
2
2
3
4
Q. No.
151
152
153
154
155
156
157
158
159
160
Ans.
4
1
2
3
3
4
3
2
1
3
Q. No.
161
162
163
164
165
166
167
168
169
170
Ans.
2
3
2
3
3
1
4
2
4
4
Q. No.
171
172
173
174
175
176
177
178
179
180
Ans.
2
2
2
4
2
3
3
1
2
3
Q. No.
181
182
183
184
185
186
187
188
189
190
Ans.
2
3
1
1
4
4
3
2
2
3
Q. No.
191
192
193
194
195
196
197
198
199
200
Ans.
3
2
1
2
3
1
2
2
3
4
RESONANCE
XI-XII ResoMost_STP 48